首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Río-Segade S  Bendicho C 《Talanta》1999,48(2):477-484
A reversed-phase high-performance liquid chromatography (HPLC) method with cold vapor atomic absorption spectrometry (CV-AAS) detection is developed for mercury speciation. In this paper, the efficiency of tetrabutylammonium bromide reagent and sodium chloride in a methanol-water mixture as mobile phase is evaluated for HPLC separation of methylmercury and inorganic mercury coupled with on-line CV-AAS determination. Both mercury species are separated on a reversed-phase C(18) column. Several parameters (e.g. composition and flow-rate of mobile phase) are investigated for the optimization of HPLC separations. CV-AAS technique parameters are also studied for their effect on sensitivity (sodium borohydride and sodium hydroxide concentrations in the reducing agent, reducing agent flow-rate, length of the reduction coil and nitrogen flow-rate). Quantitative recoveries for both inorganic mercury and methylmercury are obtained from a spiked natural water sample.  相似文献   

2.
Previous animal experiments suggested that the Magos cold vapor atomic absorption spectroscopic (CVAAS) method might overestimate the concentrations of inorganic mercury (I-Hg) in the presence of methylmercury (MeHg). In the present study it is shown that this error is due to a fast degradation of MeHg during the formation of the analytical signal. For brain samples, about 5% of the total amount of MeHg in the reaction vessel is degraded to I-Hg. Speciation of Hg in aqueous solution of MeHg chloride, after purification with ionexchange chromatography using the Magos method, showed that about 9% was I-Hg. Analysis by NMR of MeHg chloride and MeHg hydroxide showed that less than 1% was in the form of I-Hg. The absolute magnitude of the error in the CVAAS method is dependent on the amounts of SnCl2 and MeHg in the reaction vessel; however, the ratio of I-Hg to total (T-Hg) is shown to be independent of the amount of MeHg (25.5–255 ng as Hg) in the reaction vessel. A procedure for corrections is proposed, based on the results from these studies and empirical data from speciation analyses of brain tissue from MeHg-exposed rats and rabbits.  相似文献   

3.
Guo T  Baasner J 《Talanta》1993,40(12):1927-1936
A method for on-line treatment of whole blood in a microwave oven and determination of mercury by flow injection cold vapor atomic absorption spectrometry was developed. After dilution of the whole blood and addition of oxidant, all further treatment and measurement were performed automatically, on-line. Recoveries of five mercury compounds were complete. Good agreement between measured and recommended values of mercury in whole blood reference materials was obtained. Measured mercury values also agreed with results from other accepted methods. Sample throughput was about 45 measurements/hr. Detection limit (3s) in diluted sample was 0.1 μg/l corresponding to 1μg/l Hg in whole blood. The RSD value at 0.5 μg/l Hg in the diluted sample was 6–7% (11 measurements and 0.5 ml sample volume). Mercury concentrations between 1 and 150 μg/l in whole blood can be measured using this method. For three replicate measurements, 0.5 ml of whole blood is required.  相似文献   

4.
Ma HB  Fang ZL  Wu JF  Liu SS 《Talanta》1999,49(1):125-133
A sequential injection system for the determination of mercury by vapor generation atomic absorption spectrometry (VGAAS) using tetrahydoborate reductant was developed, characterized by prevention of sample and reagent mixing in the holding coil using small air segments and initiation of the vapor generation in a flow-through gas-liquid separator. Extremely small volumes of reductant of 15-30 mul (0.2-1.0% NaBH(4)) and sample acidity as low as 0.05 mol l(-1) HCl were sufficient for achieving performance similar to flow injection (FI) VGAAS systems. A sample throughput of 90 h(-1) was achieved with 400 mul samples with a precision of 2.0% RSD at 10 mug l(-1)Hg, and a detection limit of 0.1 mug l(-1) (3sigma). Reagent consumption was reduced by a factor of 25 in comparison to the FI-VGAAS system. Good agreement with the certified value was obtained for the determination of mercury in seawater in a standard reference sample.  相似文献   

5.
A flow system was developed for the determination of total mercury concentration in fish samples by cold vapor atomic absorption spectrophotometry (CVAAS), based on the multicommuted flow injection analysis (MCFIA) approach. The system uses independently controlled solenoid valves for the introduction of reagents and samples. When not injected, solutions were recirculating to the reservoir bottles, in this way reducing the waste produced by the analytical system and also the sample consumption. Results were compared to those obtained by the reference flow injection procedure. Accuracy was also assessed by recovery studies using a certified reference material as well as spiked samples; recovery percentages in the range of 90.7% to 99.8% were found. The repeatability of the method was better than 6.0% (RSD, n = 10). A limit of detection of 4.8 microg of mercury per kg of fresh fish sample was achieved. The total waste produced was reduced to 30% of that from the reference flow injection CVAAS procedure.  相似文献   

6.
Rokkjær I  Hoyer B  Jensen N 《Talanta》1993,40(5):729-735
The determination of mercury by the title method with sodium tetrahydroborate as reducing agent can be interfered with by volatile nitrogen oxides which inhibit the reduction of mercury by scavenging the reducing agent. The nitrogen oxides are formed as reduction products of nitric acid during sample decomposition. The interference effect was encountered in the determination of mercury in sewage sludge digests, and the main symptom was poor reproducibility of the shape of the mercury peak. The area of the mercury peak is more resistant to the interference than the peak height. The nitrogen oxide interference did not cause any systematic error in the mercury determination when calibration was done by standard addition. The interference can be easily remedied by purging the sample with argon.  相似文献   

7.
A comparative study of three mercury chelate forming reagents [diethyldithiocarbamate, pyrrolidin-1-yldithioformate and diphenylthiocarbazone (dithizone)] has been carried out for the preconcentration of ultratrace amounts of inorganic mercury and methylmercury in silica C(18) minicolumns as the solid sorbent. Sample flow injection in-line sorbent extraction was coupled with continuous cold vapour atomic absorption spectrometry (CVAAS) for detection. Results showed the superiority of the carbamate type reagents over the dithizone for the on-line formation and preconcentration of the corresponding mercury chelates. Using diethyldithiocarbamate (DDC) as reagent, aqueous sample volumes of 100 ml can be preconcentrated with 100% efficiency for both inorganic mercury and methylmercury. Quantitative release of the retained DDC chelates was obtained for volumes of eluent (ethanol) of 50 microl. Following the proposed procedure, detection limits of 16 ng/l. of mercury were achieved for sample volumes of 25 ml. The relative standard deviation was +/- 3.4% at 0.5 microg/l. Hg(II) levels. The method has been successfully applied to the determination of low levels of mercury in sea-water.  相似文献   

8.
A novel method based on photo-induced chemical vapor generation (CVG) as interface to on-line coupled Hg-cysteine ion chromatograpy (IC) with atomic fluorescence spectrometry (AFS) was developed for rapid determination of methylmercury (MHg) in seafood. Separation of inorganic mercury (Hg2+) and methylmercury(CH3Hg+) was accomplished on a Hamilton PRP X-200 polymer-based exchange column with a mobile of 3% acetonitrile, 1% (w/w) L-cysteine and 20 mmol L− 1 pyridine and 160 mmol L− 1 formic acid, at pH 2.4 within 7 min. Once separated, both species are reduced by formic acid in mobile phase under UV radiation to convert Hg0 on-line, which is subsequently swept (by argon carrier gas) into an atomic fluorescence spectrometry (AFS) for measurement. Under the optimized experiment conditions, the detection limits (as Hg), based on three times the standard deviation of a standard solution, were found to be 0.1 ng mL− 1 for mercury and 0.08 ng mL− 1 for methylmercury, with an injection volume of 100 μL. The developed method was validated by determination of certified reference material DORM-2 and was further applied in determination of seafood samples.  相似文献   

9.
A novel method for preconcentration of methylmercury and inorganic mercury from water samples was developed involving the determination of ng l−1 levels of analytes retained on the silica C18 solid sorbent, previous complexation with ammonium pyrrolidine dithiocarbamate (APDC), by slurry sampling cold vapor atomic absorption spectrometry (SS-CVAAS) in a flow injection (FI) system. Several variables were optimized affecting either the retention of both mercury species, such as APDC concentration, silica C18 amount, agitation times, or their determination, including hydrochloric acid concentration in the suspension medium, peristaltic pump speed and argon flow-rate. A Plackett-Burman saturated factorial design permitted to differentiate the influential parameters on the preconcentration efficiency, which were after optimized by the sequential simplex method. The contact time between mercury containing solution and APDC, required to reach an efficient sorption, was decreased from 26 to 3 min by the use of sonication stirring instead of magnetic stirring. The use of 1 mol dm−3 hydrochloric acid suspension medium and 0.75% (m/v) sodium borohydride reducing agent permitted the selective determination of methylmercury. The combination of 5 mol dm−3 hydrochloric acid and 10−4% (m/v) sodium borohydride was used for the selective determination of inorganic mercury. The detection limits achieved for methylmercury and inorganic mercury determination under optimum conditions were 0.96 and 0.25 ng l−1, respectively. The reliability of the proposed method for the determination of both mercury species in waters was checked by the analysis of samples spiked with known concentrations of methylmercury and inorganic mercury; quantitative recoveries were obtained.  相似文献   

10.
Summary A continuous flow analysis is described for the determination of total mercury by cold vapor atomic absorption spectrometry. Organic mercury compounds such as methylmercury(II) chloride, ethylmercury(II) chloride and phenylmercury(II) chloride were decomposed by potassium peroxodisulphate with addition of ferric chloride as catalytic reagent. The reducing reagent used was tin(II) chloride in sodium hydroxide solution. With 1,000 mg Fe/l added in the decomposition process, we found that methylmercury(II) chloride and ethylmercury(II) chloride gave response signals similar to those of mercury(II) chloride. The proposed method was applied to the analysis of total mercury in waste water. Permanent address: Department of Chemistry, Faculty of Mathematics and Natural Sciences, Andalas University, Padang, West Sumatra, Indonesia  相似文献   

11.
The determination of trace concentrations of Hg in water samples by the use of electrolytic cold vapor generation (ECVG) system and AFS was studied. Several buffer solutions were used and the detection limits with these systems were found to be by a factor of 1–2 lower than in the conventional electrolytic cold vapor generation system. Comparing with the traditional inorganic acid, phosphate buffer solution (PBS) increased the signal intensity of Hg vapor from electrolytic generation on Pt cathode and reduced the impact of cathode erosion on the stability of signal intensity. Moreover, buffer solution has better interference tolerance. The effects of the electrolytic conditions and interference ions on the ECVG have been studied. Under optimized conditions and with PBS as catholyte the detection limit for Hg was found to be 0.27 ng L−1. The relative standard deviation was 2.8% for 11 consecutive measurements of 1 μg L−1 Hg. This method has been applied in the determination of inorganic Hg in Yangtze River water.  相似文献   

12.
A simple and reliable method for Hg determination in fish samples has been developed. Lyophilised fish tissue samples were extracted in a 25% (w/v) tetramethylammonium hydroxide (TMAH) solution; the extracts were then analysed by FI-CVAFS. This method can be used to determine total and inorganic Hg, using the same FI manifold. For total Hg determination, a 0.1% (w/v) KMnO4 solution was added to the FI manifold at the sample zone, followed by the addition of a 0.5% (w/v) SnCl2 solution, whereas inorganic Hg was determined by adding a 0.1% (w/v) L-cysteine solution followed by a 1.0% (w/v) SnCl2 solution to the FI system. The organic fraction was determined as the difference between total and inorganic Hg. Sample preparation, reagent consumption and parameters that can influence the FI-CVAFS performance were also evaluated. The limit of detection for this method is 3.7 ng g?1 for total Hg and 4.3 ng g?1 for inorganic Hg. The relative standard deviation for a 1.0 µg L?1 CH3Hg standard solution (n = 20) was 1.1%, and 1.3% for a 1.0 µg L–1 Hg2+ standard solution (n = 20). Accuracy was assessed by the analysis of Certified Reference Material (dogfish: DORM-2, NRCC). Recoveries of 99.1% for total Hg and 93.9% inorganic Hg were obtained. Mercury losses were not observed when sample solutions were re-analysed after a seven day period of storage at 4°C.  相似文献   

13.
In this study we firstly report a new electrolytic cold vapor generation system for mercury determination on Pt/Ti cathode in the presence of organic acid catholyte. Comparing with the traditional inorganic acid, formic acid increased the signal intensity of Hg vapor from electrolytic generation on Pt cathode and reduced the impact of cathode erosion on the stability of signal intensity. Moreover, formic acid has better interference tolerance. The introduction location for carrier gas is probably the most important factor that influences the signal intensity of Hg from electrolytic vapor generation. The effects of the electrolytic conditions and interference ions on the ECVG have been studied. Under the optimized conditions, the detection limit (3σ) of Hg (II) in aqueous solutions is 1.4 ng L−1; a relative standard deviation of 2.3% for 1 μg L−1 Hg was obtained. The accuracy of this method was verified by the determination of mercury in the certified reference materials. This system has been applied satisfactorily to the determination of Hg in Traditional Chinese Medicines samples.  相似文献   

14.
A cold vapor atomic absorption spectrometric method was developed for the subnanogram-per-gram determination of total Hg in a wide variety of foods. Foods were weighed into 50 mL polypropylene centrifuge tubes and dried without charring at 55 degrees C in a circulating oven. Samples were then digested at 58 degrees C with HNO3, HCl, and H2O2. After matrix modification with solutions of 2% Mg(NO3)2, 0.01% Triton X-100, and Cu(II) at 10 microg/mL, samples were analyzed by using a CeTAC Technologies M-6000A dedicated Hg analyzer. Based on a 2 g sample weight, the detection limit of the method over 12 batches averaged 0.30 ng/g wet weight and ranged from 0.03 to 0.6 ng/g. Recoveries of Hg added to 17 different foods, analyzed in a routine manner, averaged 97%, and individual recoveries ranged from 77 to 107%. Accuracy was confirmed by analysis of 7 biological reference materials from the National Research Council of Canada and the National Institute of Standards and Technology. Stabilization of low concentrations of Hg in solutions containing no sample was required to prevent loss of Hg from blanks. In a comparison of NaCl, potassium dichromate, and Au(II), chloride was much more effective for stabilization than the other two, and HCl was used for subsequent stabilization.  相似文献   

15.
Simple and rapid analytical procedures for the determination of Hg2+ and methylmercury in fish were proposed after careful optimization of chemical and instrumental parameters for Hg measurement by cold vapor (CV)/hydride generation (HG) atomic absorption spectrometry (AAS) and CV/HG inductively coupled plasma atomic emission spectrometry (ICP-AES). Quantitative extraction of Hg species avoiding any inter-species conversion was achieved by fast microwave assisted solubilization of fish tissue with relatively low amount of tetramethylammonium hydroxide (TMAH) or 6 mol L− 1 HCl. After careful optimization of chemical parameters selective determination of Hg2+ in the presence of excess of methylmercury is attained by using continuous flow CV AAS, 1% m/V SnCl2 as reductant and 0.1 mol L− 1 HCl as reaction medium. Simple calibration curve prepared with aqueous standard of Hg2+ is recommended for its quantification. Both Hg2+ and methylmercury could be determined simultaneously with equal sensitivity by CV/HG ICP-AES directly in the diluted TMAH solution obtained after extraction with 1% m/V NaBH4 as reductant. Quantification of the sum of Hg2+ and methylmercury against calibration curve prepared with aqueous standard of methylmercury is suggested. It should be mentioned that batch hydride generation system with quartz tube heated in air/acetylene flame could also be used for simultaneous determination of both Hg species in fish extracts, with standard additions calibration. The validity of the developed analytical procedures for selective determination of Hg2+ and methylmercury (by difference between the total Hg and Hg2+) is confirmed by the analyses of certified reference material DOLT-1 and reference material IMEP-20. Very close agreement between certified values and analytical results was found.  相似文献   

16.
17.
A mixture of 50% H2O2-H2SO4 (3 + 1, v/v) was used for decomposition of food in open vessels at 80 degrees C. The treatment allowed rapid total mercury determination by flow injection cold vapor atomic absorption spectrometry. Cabbage, potatoes, peanuts paste, hazelnuts paste, oats, tomatoes and their derivatives, oysters, shrimps, prawns, shellfish, marine algae, and many kinds of fish were analyzed by the proposed methodology with a limit of quantitation of 0.86 +/- 0.08 microg/L mercury in the final solution. Reference materials tested also gave excellent recovery.  相似文献   

18.
The flow manifold described allows automatic extraction of metal ions in aqueous samples into 4-methyl-2-penthanone with ammonium pyrrolidinedithiocarbamate as an extracting agent. The organic extract is led into the loop of an injector situated in an integrated feed system of an atomic absorption spectrometer. No dispersion of the injected organic extract plug, 110 μl, occurs in the aqueous feed stream and the resulting signal from the spectrometer is a peak. An increase in sensitivity of 15–20 is achieved for copper, nickel, lead and zinc in comparison with direct aspiration of the aqueous samples. The sampling frequency is 40 h?1 and the consumption of 4-methyl-2-pentanone is typically 0.3 ml min?1. The detection limit for copper is about 1 μ l?1.  相似文献   

19.
With UV irradiation, Hg2+ in aqueous solution can be converted into Hg0 cold vapor by low molecular weight alcohols, aldehydes, or carboxylic acids, e.g., methanol, formaldehyde, acetaldehyde, glycol, 1,2-propanediol, glycerol, acetic acid, oxalic acid, or malonic acid. It was found that the presence of nano-TiO2 more or less improved the efficiency of the photo-induced chemical/cold vapor generation (photo-CVG) with most of the organic reductants. The nano-TiO2-enhanced photo-CVG systems can be coupled to various analytical atomic spectrometric techniques for the determination of ultratrace mercury. In this work, we evaluated the application of this method to the atomic fluorescence spectrometric (AFS) determination of mercury in cold vapor mode. Under the optimized experimental conditions, the instrumental limits of detection (based on three times the standard deviation of 11 measurements of a blank solution) were around 0.02–0.04 μg L−1, with linear dynamic ranges up to 15 μg L−1. The interference of transition metals and the mechanism of the photo-CVG are briefly discussed. Real sample analysis using the photo-CVG-AFS method revealed that it was promising for water and geological analysis of ultralow levels of mercury. Image of the photo-CVG instrumentation showing the photoreactor inside the water cooling unit  相似文献   

20.
A method for organic, inorganic and total mercury determination in fish tissue has been developed using chemical vapor generation and collection of mercury vapor on a gold gauze inside a graphite tube and further atomization by electrothermal atomic absorption spectrometry. After drying and cryogenic grinding, potassium bromide and hydrochloric acid solution (1 mol L− 1 KBr in 6 mol L− 1 HCl) was added to the samples. After centrifugation, total mercury was determined in the supernatant. Organomercury compounds were selectively extracted from KBr solution using chloroform and the resultant solution was back extracted with 1% m/v L-cysteine. This solution was used for organic Hg determination. Inorganic Hg remaining in KBr solution was directly determined by chemical vapor generation electrothermal atomic absorption spectrometry. Mercury vapor generation from extracts was performed using 1 mol L− 1 HCl and 2.5% m/v NaBH4 solutions and a batch chemical vapor generation system. Mercury vapor was collected on the gold gauze heated resistively at 80 °C and the atomization temperature was set at 650 °C. The selectivity of extraction was evaluated using liquid chromatography coupled to chemical vapor generation and determination by inductively coupled plasma mass spectrometry. The proposed method was applied for mercury analysis in shark, croaker and tuna fish tissues. Certified reference materials were used to check accuracy and the agreement was better than 95%. The characteristic mass was 60 pg and method limits of detection were 5, 1 and 1 ng g− 1 for organic, inorganic and total mercury, respectively. With the proposed method it was possible to analyze up to 2, 2 and 6 samples per hour for organic, inorganic and total Hg determination, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号