首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pressure-broadening parameters of six lines belonging to the ν5 band of C2H2 in collision with N2 have been measured with a tunable diode-laser spectrometer in order to complete up to J = 33 our earlier measurements (D. Lambot, G. Blanquet, and J. P. Bouanich, J. Mol. Spectrosc.136, 86–92 (1989)) on the broadening of C2H2 by N2 and O2 at 297 K. These N2- and O2-broadening coefficients have been first calculated on the basis of the Anderson-Tsao-Curnutte theory; in this approach, we show that the short-range interactions which contribute significantly to the linewidths are not correctly treated. Next, we consider the improved semiclassical model proposed by Robert and Bonamy. The intermolecular potential consists in the addition of the atom-atom interaction model to the quadrupolar interactions. The limited radial spherical harmonics expansion of the atom-atom potential, from which expressions for the differential cross section were derived, appears to be quite insufficient at short intermolecular distances. Therefore, we use a more accurate representation of this potential, avoiding an inadequate truncation and keeping the analytic expressions obtained by Bonamy and Robert. In the calculations we take into account the contributions derived from the radial functions U000(r), U200(r), and U220(r), as well as from U400(r). A theoretical expression is obtained for the U400 contribution to the differential cross section. The results of the calculations arising from the exact radial expansion of the atom-atom potential appear to be significantly larger for high J lines than those arising from the truncated expansion. The latter results, which do not include adjustable atom-atom parameters, are in good agreement with experimental broadening coefficients for C2H2---O2 and in reasonable agreement (except at large J values) for C2H2---N2. It is also shown that the contributions to the linewidths derived from U400 are rather small for C2H2---N2 and more important for C2H2---O2. Finally, by calculating the collisional linewidths of C2H2---N2 and C2H2---O2 at 200 K, we have predicted their temperature dependences.  相似文献   

2.
Microwave linewidths of C2H4O (κ = -0.41) broadened by H2, N2, O2, and CO2 and considering dipole-quadrupole interactions have been calculated using the Mehrotra-Boggs theory (1977). This theory accounts satisfactorily for observed linewidths  相似文献   

3.
4.
The interaction of O2, CO2, CO, C2H4 AND C2H4O with Ag(110) has been studied by low energy electron diffraction (LEED), temperature programmed desorption (TPD) and electron energy loss spectroscopy (EELS). For adsorbed oxygen the EELS and TPD signals are measured as a function of coverage (θ). Up to θ = 0.25 the EELS signal is proportional to coverage; above 0.25 evidence is found for dipole-dipole interaction as the EELS signal is no longer proportional to coverage. The TPD signal is not directly proportional to the oxygen coverage, which is explained by diffusion of part of the adsorbed oxygen into the bulk. Oxygen has been adsorbed both at pressures of less than 10-4 Pa in an ultrahigh vacuum chamber and at pressures up to 103 Pa in a preparation chamber. After desorption at 103 Pa a new type of weakly bound subsurface oxygen is identified, which can be transferred to the surface by heating the crystal to 470 K. CO2 is not adsorbed as such on clean silver at 300 K. However, it is adsorbed in the form of a carbonate ion if the surface is first exposed to oxygen. If the crystal is heated this complex decomposes into Oad and CO2 with an activation energy of 27 kcal/mol(1 kcal = 4.187 kJ). Up to an oxygen coverage of 0.25 one CO2 molecule is adsorbed per two oxygen atoms on the surface. At higher oxygen coverages the amount of CO2 adsorbed becomes smaller. CO readily reacts with Oad at room temperature to form CO2. This reaction has been used to measure the number of O atoms present on the surface at 300 K relative to the amount of CO2 that is adsorbed at 300 K by the formation of a carbonate ion. Weakly bound subsurface oxygen does not react with CO at 300 K. Adsorption of C2H4O at 110 K is promoted by the presence of atomic oxygen. The activation energy for desorption of C2H4O from clean silver is ~ 9 kcal/mol, whereas on the oxygen-precovered surface two states are found with activation energies of 8.5 and 12.5 kcal/mol. The results are discussed in terms of the mechanism of ethylene epoxidation over unpromoted and unmoderated silver.  相似文献   

5.
Counterflow diffusion flame experiments and modeling results are presented for a fuel mixture consisting of N2, C2H2, and C2H4 flowing against decomposition products from a solid AP pellet. The flame zone simulates the diffusion flame structure that is expected to exist between reaction products from AP crystals and a hydrocarbon binder. Quantitative species and temperature profiles have been measured for one strain rate, given by a separation of 5 mm, between the fuel exit and the AP surface. Species measured include C2H2, C2H4, N2, CN, NH, OH, CH, C2, NO, NO2, O2, CO2, H2, CO, HCl, H2O, and soot volume fraction. Temperature was measured using a combination of a thermocouple at the fuel exit and other selected locations, spontaneous Raman scattering measurements throughout the flame, NO vibrational populations, and OH rotational population distributions. The burning rate of the AP was also measured for this flame’s strain rate. The measured eighteen scalars are compared with predictions from a detailed gas-phase kinetics model consisting of 105 species and 660 reactions. Model predictions are found to be in good agreement with experiment and illustrate the type of kinetic features that may be expected to occur in propellants when AP particles burn with the decomposition products of a polymeric binder.  相似文献   

6.
Energy loss spectra of 2.5 keV electrons in the region of the carbon K-edge in C2H2, C2H4, C2H6 and C6H6 are report  相似文献   

7.
Using Thermal Programmed Desorption (TPD), Low Energy Electron Diffraction (LEED) and Auger Electron Spectroscopy (AES) we have studied the adsorption of hydrogen-containing molecules (H2, C2H2, C2H4, C2H6) and oxygen-containing molecules (CO and NO) on two vicinal planes of the Re(0001) surface. The two surfaces are designated thus: ReS ¦14(0001)(101̄1)¦, ReS |6(0001)(167̄1) | . The structural defects have little effect on the adsorption of hydrogen and the hydrocarbons. They are more influential in the case of the oxygen-containing molecules. This is particularly true for CO; on the kink sites the CO molecules can completely dissociate whereas only a partial dissociation is possible on the steps. These results should be viewed in relation to the strong bond energy between carbon and oxygen in a CO molecule of 256 kcal/mole and the great affinity of oxygen for rhenium; ERe?O = 127 kcal/mole.  相似文献   

8.
The present work reports new experimental and numerical results of the combustion properties of hydrogen based mixtures diluted by nitrogen and steam. Spherical expanding flames have been studied in a spherical bomb over a large domain of equivalence ratios, initial temperatures and dilutions at an initial pressure of 100 kPa (Tini = 296, 363, 413 K; N2/O2 = 3.76, 5.67, 9; %Steam = 0, 20, 30). From these experiments, the laminar flame speed SL0, the Markstein length L’, the activation energy Ea and the Zel'dovich β number have been determined. These parameters were also simulated using COSILAB® in order to verify the validity of the Mével et al. [1] detailed kinetic mechanism. Other parameters as the laminar flame thickness δ and the effective Lewis number Leeff were also simulated. These new results aim at providing an extended database that will be very useful in the hydrogen combustion hazard assessment for nuclear reactor power plant new design.  相似文献   

9.
The chemisorption of H2, O2, CO, CO2, NO, C2H2, C2H4 and C has been studied on the clean stepped Rh(755) and (331) surfaces. Low energy electron diffraction (LEED), Auger electron spectroscopy (AES) and thermal desorption spectroscopy (TDS) were used to determine the size and orientation of the unit cells, desorption temperatures and decomposition characteristics for each adsorbate. All of the molecules studied readily chemisorbed on both stepped surfaces and several ordered surface structures were observed. The LEED patterns seen on the (755) surface were due to the formation of surface structures on the (111) terraces, while on the (331) surface the step periodicity played an important role in the determination of the unit cells of the observed structures. When heated in O2 or C2H4 the (331) surface was more stable than the (755) surface which readily formed (111) and (100) facets. In the CO and CO2 TDS spectra a peak due to dissociated CO was observed on both surfaces. NO adsorption was dissociative at low exposures and associative at high exposures. C2H4 and C2H2 had similar adsorption and desorption properties and it is likely that the same adsorbed species was formed by both molecules.  相似文献   

10.
Twenty-seven new cw far infrared laser lines with wavelengths between 137 and 988m have been observed from optically pumping C2H3F, C2H3Cl, C2H3Br, C2H5F, C2H3CN, CH2CF2, HCOOH and CH3Br with a CO2 laser. The wavelengths of these FIR laser lines were determined together with their optimum pressures and relative intensities.  相似文献   

11.
张莉  朱正和 《中国物理 B》2013,22(2):23102-023102
In the present work we calculate the energies,quadrupole moments,and electric field gradients(EFGs) of molecules C2,N2,and O2 based on the DIRRCI method with basis aug-cc-pVTZ-DK.We prove that the quadratic force constant k2 is the product of charge and EFG at its equilibrium nuclear distance.The dipole charge distributions for these symmetrical molecules are all in equilibrium,however,the quadrupole charge distributions are far from equilibrium;among these,there is the most remarkable deviation from equilibrium for N2,for its many charges concentrate on two sides of the molecule,which is in agreement with the well-known characteristic of the nitrogen molecule.The relativistic effect is remarkable even for the same period.  相似文献   

12.
The chemisorption of H2, O2, CO, CO2, NO, C2H4, C2H2 and C has been studied on the clean Rh(111) and (100) surfaces. LEED, AES and thermal desorption were used to determine the surface structures, disordering and desorption temperatures, displacement and decomposition characteristics for each species. All of the molecules studied readily chemisorbed on both surfaces. A large variety of ordered structures was observed, especially on the (111) surface. The disordering temperatures of most ordered surface structures on the (111) surface were below 100°C. It was necessary to adsorb the gases at 25° C or below in order to obtain well-ordered surface structures. Chemisorbed oxygen was readily removed from the surface by H2 or CO gas at crystal temperatures above 50°C. CO2 appears to dissociate to CO upon adsorption on both rhodium surfaces as indicated by the identical ordering and desorption characteristics of these two molecules. C2H4 and C2H2 also had very similar ordering and desorption characteristics and it is likely that the adsorbed species formed by both molecules is the same. Decomposition of ethylene produced a sequence of ordered carbon surface structures on the (111) face as a result of a bulk-surface carbon equilibrium. The chemisorption properties of rhodium appear to be generally similar to those of iridium, nickel and palladium.  相似文献   

13.
In the frequency range between 91.5 and 95.5 GHz, three rotational lines of the 32S16O2 and two rotational lines of the 34S16O2 molecules in the fundamental vibrational state, and also two lines of the 32S16O2 molecule in the v2 vibrational state, have been investigated. Center frequencies and absolute absorptions have been measured and compared with theoretical values. Furthermore, the self-broadening and broadening by H2O and N2 of the transition 23(6,18)–24(5,19) with the line center at 94.064 GHz have been investigated. The following linewidth parameters were found: SO2-SO2, 18.2±0.3 MHz/torr; SO2-N2, 3.8±0.1 MHz/torr; SO2-H2O, 15.2±0.2 MHz/torr. The bridge spectrometer and the measuring method used are also described.  相似文献   

14.
The chemisorption of small molecules (CO, CO2, C2H2, C2H4, H2 and NH3) has been studied on the clean Fe(110) and (111) crystal faces by low-energy electron diffraction (LEED) and thermal desorption. C2H4 and C2H2 yield the same sequence of surface structures that change with temperature and crystal orientation. CO and CO2 chemisorption similarly results in the formation of the same types of surface structures that change with surface temperature and crystal orientation. Ammonia forms several ordered surface structures on both iron crystal faces. All of the molecules decompose as a function of temperature on the iron surfaces as indicated by the Auger and thermal desorption spectra.  相似文献   

15.
16.
We present a line profile study for two lines in the 2ν3 band of CH4 recorded with a frequency stabilized tunable diode laser spectrometer. The broadening and narrowing (Dicke effect) parameters of the R(0) line perturbed by N2, O2, and He are derived from a simultaneous fitting of spectra at pressures from 20 to 300 Torr by using the soft and hard collision models. These parameters are determined for the A and F components of the unresolved R(3) manifold perturbed by N2, Ar, and He from the line profile analysis of spectra at pressures between 50 and 500 Torr. The line mixing effect between the two F components is also taken into account and the absorber speed dependent effect on broadening is estimated for N2 and Ar.  相似文献   

17.
CH4/H2-based discharges are attractive for dry etching of single crystal ZnO because of their non-corrosive nature. We show that substitution of C2H6 for CH4 increases the ZnO etch rate by approximately a factor of 2 both with and without any inert gas additive. The C2H6/H2/Ar mixture provides a strong enhancement over pure Ar sputtering, in sharp contrast to the case of CH4/H2/Ar. The threshold ion energy for initiating etching is 42.4 eV for C2H6/H2/Ar and 59.8 eV for CH4/H2/Ar. The etched surface morphologies were smooth, independent of the chemistry and the Zn/O ratio in the near-surface region was unchanged within experimental error after etching with both chemistries. The plasma etching improved the band-edge photoluminescence intensity and suppressed the deep level emission from the bulk ZnO under our conditions, due possibly to removal of surface contamination layer.  相似文献   

18.
A comparative study of the adsorption of several gases on a Pt(S)-[9(111) × (111)] surface was performed using LEED, Auger spectroscopy, flash desorption mass spectrometry and work function changes as surface sensitive techniques. Adsorption was found to be generally less ordered on the stepped surface than on the corresponding flat surface with the exception of the oxygen, where r well ordered overlayer in registry over many terraces was found. Absolute coverages were determined from flash desorption experiments for O2, CO and C2N2. Similar values were obtained as on flat Pt surfaces. Two different surface species seem to be formed upon adsorption of C2H4 depending on the adsorption temperature. Contrary to reports from Pt(111) surfaces conversion between the two surface species is heavily restricted on the stepped surface. Work function changes revealed nonlinear adsorbate effects where the adsorbate is electronegative with respect to the substrate. Various adsorption models are discussed in the light of complementary experimental evidence. The results of this study are compared with data available from flat Pt surfaces and possible influences of steps are discussed. No general trends, however, emerge from this comparison and it seems that eventual influences of steps have to be considered individually for every adsorbate.  相似文献   

19.
20.
Electron excited carbon KVV Auger spectra of CO, C2H4, C2N2 and C6H6 adsorbed on Pt(111) are compared. By estimating the effective Coulomb interaction between the final-state holes it is possible to associate some features with transitions observed in free molecule spectra, but others must involve at least one electron with energy within the conduction band of the metal. Such “cross-transitions” are associated with strong 2π* character of filled states in the presence of a core hole in molecules such as CO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号