首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
A complex of Cu(II) chloride with 2-amino-5-ethyl-1,3,4-thiadiazole (AET) was prepared, and its structure was studied by IR spectroscopy and single crystal X-ray diffraction. The complex has the composition CuCl2(AET)4. The coordination sphere of the copper atom includes four molecules of the heterocyclic ligand coordinated via N atoms of thiadiazole rings and one of Cl? anions; the second Cl? anion is in the outer sphere.  相似文献   

2.
Interactions of nanofilms containing ethanolamino groups with cobalt(II), nickel(II), copper(II), and zinc(II) ammoniates at the surface of polyvinylchloride plates and with chromium(III) ammoniate in a solution of ammonium chloride were studied. It was found that the groups of the film, together with chloride ions, displace all ammonia molecules from the inner coordination sphere of the metal. The average number of the ethanolamino N atoms of the film participating in formation of the metal ion coordination sphere is 3.35, 3.47, 3.67, 3.42, and 3.37 for Co2+, Ni2+, Cu2+, Zn2+, and Cr3+ complexes, respectively. The average number of chloride ions is 2 for Co2+, Ni2+, Cu2+, and Zn2+ and 3 for Cr3+. The coordination number of the central atoms is 6. The Cr3+ ion forms a coordination sphere composed of three N atoms and three chloride ions and a coordination sphere (charged 1+) made up of four N atoms and two chloride ions, with the third chloride ion being in the outer sphere. The Co2+, Ni2+, and Cu2+ ions form uncharged coordination spheres of two types: (1) with four N atoms and two chloride ions and (2) with three N atoms, two chloride ions, and the O atom of the ethanol hydroxyl group.  相似文献   

3.
In the title complex, {[Cu(C8H8NO3S)2(H2O)]·2H2O}n, the CuII cation has a distorted square‐pyramidal coordination environment consisting of five O atoms, one from a water molecule, one from an N—O group and the other three from the carboxylate groups of two 3‐(2‐pyridylsulfanyl)propionate N‐oxide anions. The aqua[3‐(2‐pyridylsulfanyl)propionato N‐oxide]copper(II) moieties are bridged by 3‐(2‐pyridylsulfanyl)propionate N‐oxide anions to form an infinite three‐dimensional coordination polymer with a zigzag chain structure. The crystal structure is stabilized by hydrogen bonds.  相似文献   

4.
《Polyhedron》2001,20(22-23):2787-2798
1H-Pyrazole complexes, [Cu(HL)HPz Cl] nH2O and [Cu(L)HPz] nH2O were prepared and characterized, where HL and L, respectively, refer to the mononegative and dinegative N-salicylidenearoylhydrazine anions. The X-ray crystal and molecular structure of [monochloro(N-salicylidenebenzoylhydrazinato)ONO(−1)monopyrazole] copper(II) monohydrate, [Cu(HSBzh)HPz Cl] H2O, and [(N-salicylidenebenzoylhydrazinato)ONO(−2)monopyrazole] copper(II) hemihydrate, [Cu(SBzh)HPz] 1/2H2O, were determined. The Cu(II) in [Cu(HSBzh)HPz Cl] H2O is in a distorted square pyramidal environment and is bound in the equatorial plane with the mononegative tridentate aroylhydrazone anion and pyrazole nitrogen, the axial fifth coordination site is occupied by a chloride ion. On the other hand, the complex [Cu(SBzh)HPz] 1/2H2O consists of two monomeric crystallographically independent but chemically similar molecules. In each molecule, the Cu(II) is in a distorted square planar geometry and is coordinated to the dinegative tridentate aroylhydrazone via the phenoxy oxygen, azomethine nitrogen and enolimide oxygen, and the fourth coordination site is occupied by the pyrazole nitrogen. The mono(μ-pyrazolate) dicopper(II) complexes, K[Cu2(L)2Pz] nH2O, were also prepared and the X-ray molecular structure of K2[Cu4(SBzh)4(Pz)2] 2H2O 1/2CH3OH was determined. In this complex, two copper(II) atoms are bridged by only one pyrazolate anion forming a dicopper mono(μ-pyrazolate) unit. Each two units are connected together by a five coordinate K+ cation forming a tetranuclear assembly. These tetranuclear assemblies are connected together by another K+ cation forming a supramolecular structure. Variable temperature magnetic studies on these pyrazolate complexes indicated antiferromagnetic behaviour with −2J values varying from 25 to 36 cm−1.  相似文献   

5.
The structure of the copper(II) chloride-triphenylphosphine-N-(2-pyrimidyl)imine complex in crystal and solution was investigated by x-ray analysis and EPR. It was found that despite the difference in the structures of the dissolved and crystalline complexes, the exocyclic nitrogen atom is contained in the coordination sphere of the metal together with the nitrogen atom of the heterocycle in both cases due to the electronic effect of the phosphorus atom. In the crystal, the copper atom is coordinated with two chlorine atoms and two molecules of the ligand, and the distance from the copper cation to the nitrogen atoms of the pyrimidine rings is significantly less than the distance to the nitrogen atoms of the phosphinimine groups (2.0 and 2.8 Å, respectively). The coordination polyhedron formed as a result is a strongly distorted axially asymmetric octahedron. In dissolution, the chlorine anions are substituted by molecules of the solvent, the complex acquires axial symmetry, and four nitrogen atoms from two ligands form a planar square with a copper(II) cation in the center.A. N. Nesmeyanov Institute of Organoelemental Compounds, Russian Academy of Sciences, 117813 Moscow. Translated from Izvestiya Akademii Nauk, Seriya Khimicheskaya, No. 1, pp. 118–125, January, 1992.  相似文献   

6.
Reaction of copper(II) cyanate with pyrazine leads to the formation of [Cu(NCO)2(pyrazine)]n ( 1 ), in which the Cu2+ cations are coordinated by two nitrogen atoms of the pyrazine ligands, as well as by four nitrogen atoms of the cyanate anions within a slightly distorted octahedral coordination. In the crystal structure the Cu2+ cations are connected by the pyrazine ligands into chains which are further linked by the cyanate anions through asymmetric μ‐1,1‐NCO coordination into layers. On heating compound 1 transforms quantitatively to copper(II) cyanate which decompose to elemental copper on further heating. No ligand deficent intermediates are observed. Magnetic measurements reval an antiferromagnetic ordering at lower temperatures mediated by the π‐system of the aromatic pyrazine ligand as well as net ferromagnetic interactions mediated by the μ‐1,1‐NCO bridging cyanato anions. A search in the Cambridge Crystal Structure Database shows that the terminal coordination mode in cyanato complexes as well as their azido and thiocyanato analogs is obviously energetically favored. In addition, a comparison of their symmetric and asymmetric end‐on (μ‐1,1) as well as end‐to‐end (μ‐1,3) bridging modes reveal interesting correlations.  相似文献   

7.
以邻苯二甲酸单甲酯(mMP)为配体合成了一个新的双核铜配位化合物[Cu2(mMP)2(H2O)2]2·2H2O (1), 并通过元素分析、红外光谱和X射线单晶衍射等方法对化合物晶体结构进行了表征. 化合物1通过四羧酸桥联的方式形成了桨轮状双金属笼结构. 每个Cu(II)离子采用四方单锥的五配位构型, 其中四个氧原子来自于四个不同的邻苯二甲酸单甲酯配体, 轴向位置上的氧原子则来自于水分子. 配位水分子和溶剂水分子与配体中未配位的氧原子形成了分子间氢键, 并进一步形成三维网络结构. 磁性数据显示双核铜内为强的反铁磁交换作用, 磁耦合作用常数2J=-324 cm-1. 通过与相关双核铜化合物的对比, 详细分析了化合物的磁构关联并讨论了羧酸类双核铜中强反铁磁性作用的结构因素. 研究表明, 影响羧酸类双核铜强反铁磁性作用的主要结构因素是配体中桥联双核铜的O-C-O部分的电子结构.  相似文献   

8.
Abstract

The synthesis of the new ligand 1,8-bis(quinolyloxy)-3,6-dithiaoctane (1) and the corresponding Cu(II), Cu(I) and Co(II) complexes is reported. The crystal and molecular structure of the copper(II) complex, [Cu(1)](ClO4)2.3H2O, has been determined by X-ray diffraction methods. The complex crystallizes in the orthorhombic space group Fddd, with cell data Z = 16, a = 20.326(2), b = 20.879(3) and c = 28.308(4)Å. The structure consists of discrete [Cu(1)]?2+ cations separated by (structurally disordered) perchlorate anions and three lattice water molecules per cation. The coordination geometry about the copper atom is pseudo-octahedral with the quinoline nitrogen and thioether sulfur atoms at the equatorial positions and the ether oxygen atoms at the axial positions. 1H NMR line-broadening experiments indicate that electron-transfer self-exchange reactions between the copper(I) and copper(II) complexes of (1) is immeasurably slow on the NMR time-scale. The coordination chemistry of (1) is compared with its oxygen analogue, 1,8-bis(quinolyloxy)-3,6-dioxaoctane.  相似文献   

9.
A new complex compound, bis(2,2,2-cryptand potassium) tetrakis(isocyanato)cuprate(II), 2[K(Crypt-222)]+ [Cu(NCS)4]2? was prepared and its crystal structure was studied by X-ray structural analysis. The structure includes one symmetrically independent complex cation [K(Crypt-222)]+ of a guest-host type and independent one half of [Cu(NCS)4]2? anion. Through the center of the anion passes crystallographic symmetry axis 2, the approximate point symmetry of the anion is D 2, while the approximate point symmetry of the complex cation is D 3. The coordination polyhedron of the [Cu(NCS)4]2? anion (four N atoms) conjugated with Cu2+ cation is a nonplanar square considerably screwed into a flattened tetrahedron. The K+ cation (coordination number 8) of the complex cation [K(Crypt-222)]+ is coordinated by all eight heteroatoms (6O + 2N) of the 2,2,2-cryptand ligand, and its coordination polyhedron can be described as bis-basecentered trigonal prism slightly screwed into an anti-prism.  相似文献   

10.
A novel linear trinuclear copper(II) complex bridged by phenoxy and benzyloxy oxygen atoms ([Cu3L2](ClO4)2 · (CH3CN)2, L = C11H13BrN2O2 2−) was synthesized and the crystal structure of the complex was determined by X-ray diffraction technique. The crystal structure of the complex contains a linear trinuclear array of copper(II) ions in which the central copper(II) ion is in an octahedron coordination sphere and lies on an inversion center of the molecule, the terminal ones are in an identical square pyramid structure. Variable-temperature magnetic data indicate that the complex displays a strong antiferromagnetic coupling with J = −270(8) cm−1 between the metal ions.  相似文献   

11.
In our series of investigations into the structural and thermal behaviour of metal thiourea (tu) complexes, the single-crystal X-ray structure of dichlorobis(thiourea-S)-zinc(II) is redetermined at higher accuracy to R?=?0.0315 proving the space group Pnma. Half of the complex molecule is in the asymmetric unit, the Zn and the two Cl atoms lie on the mirror plane. The structure analysis shows tetrahedral coordination of the Zn cation, the coordination sphere of the chloride anions and the extended hydrogen bond network. A chloride ligand is situated in the middle of the sandwich formed by bilayers of the complex molecules. We previously characterized the Cd analogue, allowing a structural comparison between the non-isostructural complexes: Mtu2Cl2 (M?=?Zn, Cd). Also the thermal properties of the complexes and their behaviour in chemical spray pyrolysis (CSP) processes are briefly correlated with the structure and bonding.  相似文献   

12.
Molecular Structures of Copper(II) and Iron(III) Chloro Complexes with di- and monoprotonated N-(pyrid-2-ylmethyl)ethylenediamine-N,N′,N′-triacetate (H2pedta?; Hpedta2?) The molecular structures of two complexes of di- and monoprotonated N-(pyrid-2-ylmethyl)ethylenediamine-N,N′,N′ -triacetate (pedta3?) with CuII and FeIII as central atoms have been determined by single crystal X-ray diffraction methods. Both complexes have a distorted octahedral coordination with H2pedta? and Hpedta2? as pentadentate ligands and a chloride ion occupying the sixth coordination site. The different oxidation states of the central atoms result in a completely different coordination behaviour of the carboxyl groups. In both complexes one of the ? CH2? COOH groups is uncoordinated. In the FeIII complex, the central atom is coordinated by the hydroxylic O atoms of the deprotonated carboxyl groups. Contrary to this in the CuII complex, the central atom is coordinated by the carbonylic O atoms. One of the coordinated carboxyl groups is protonated and the other is deprotonated. All protonated carboxyl groups in both complexes form intermolecular hydrogen bonds.  相似文献   

13.
The crystal structure of the complex of 1,10-diaza-18-crown-6 with the potassium salt of N-(diiso-propoxyphosphoryl)thiobenzamide (I) was investigated by the XRD method (CAD-4 automatic diffractometer, γCuKα; space group P21/n, a = 12.218(2), b = 16.976(3), c = 15.706(2) å, Β = 93.72(1)?, Z = 4. The structure was solved by direct methods and refined by the full-matrix least-squares procedure anisotropically to R = 0.058 for all 3330 correct independent reflections. Complex I is a guest-host type complex (composition 1:1:1), whose individual molecule consists of two different hosts (azacrown ether and organophosphorus anion) and their common guest — heptacoordinated cation K+. The coordination sphere of K+ involves one phosphoryl oxygen atom of the anion of complex I. The azacrown ether atoms and the K+ cation in the crystal structure of complex I are disordered at two positions.  相似文献   

14.
Catalysis of oxidation of aminothiols by copper ions was studied depending on the structure of aminothiols and pH of the medium. The catalytic reaction proceeds in the inner coordination sphere of Cu+. At pH 7—9, oxidation of bidentate aminothiols involves reduction of O2 to H2O2. At pH 9—13, oxidation of chelating aminothiols is accompanied by reduction of O2 to H2O, whereas oxidation of weak-chelating aminothiols still proceeds by the former mechanism. In this process, the thiolate anions coordinated to the Cu+ ions lose one electron each and are oxidized to amino disulfides, which go from the inner sphere of the Cu+ complex into a solution. Procedures developed for the determination of amino disulfides, the chemiluminescence determination of H2O2 in the presence of aminothiols as luminescence quenchers, and a modified polarographic procedure for the determination of O2 allowed us to establish that oxidation of aminothiols is not accompanied by catalytic decomposition of H2O2 that formed.  相似文献   

15.
A new oxamido-bridged tetracopper(II) complex, [Cu4(oxbe)2(bpy)2](ClO4)2 · 2H2O, where H3oxbe and bpy stand for N-benzoato-N′-(2-aminoethyl)oxamide and 2,2′-bipyridine, has been synthesized and characterized by elemental analyses, molar conductivity, infrared and electronic spectra, and single-crystal X-ray diffraction. It crystallizes in triclinic system, space group P-1, with crystallographic data: a = 7.829(5) Å, b = 12.680(5) Å, c = 13.420(5) Å, α = 104.665(5)°, β = 95.275(5)°, γ = 106.931(5)°, and Z = 1. The circular tetranuclear copper(II) cation [Cu4(oxbe)2(bpy)2]2+ with an embedded center of inversion is assembled by a pair of cis-oxbe-bridged dinuclear copper(II) units through coordination between carboxyl and copper(II). One copper(II) is located in a slightly distorted square-planar environment, while the other is in a distorted square-pyramidal geometry. In the crystal structure, abundant hydrogen bonds and aromatic stackings link the tetranuclear copper(II) units into an overall 3-D framework. Interactions of the tetranuclear copper(II) complex with herring sperm DNA (HS-DNA) are investigated by using UV absorption and fluorescence spectra, electrochemical techniques, and viscometry. The results suggest that the tetranuclear copper(II) complex interacts with DNA by intercalation with an intrinsic binding constant of 1.47 × 105 mol?1 L.  相似文献   

16.
Binuclear copper(II) complexes with acyldihydrazones of 1,3- or 1,4 benzenedicarboxylic acid and 5-methyl- or 5-bromo-2-hydroxyacetophenone in which coordination polyhedra are connected by an aromatic bridge have been synthesized and studied. The structure of the copper(II) complex with diacylhydrazone of isophthalic acid and 2-hydroxy-5-methylacetophenone (H4L) of composition [Cu2L · 3Py] was studied by X-ray diffraction. The crystals are monoclinic: a = 12.1996(12) Å, b = 17.7295(17) Å, c = 17.9339(17) Å, β = 109.7450(10)°, space group P21/n, Z = 4. The complex is of the “dimer of dimers” type and contains two binuclear subunits that bind together into a centrosymmetric dimer owing to the coordination of the copper cation to the phenoxyl oxygen atom of a neighboring binuclear molecule to form the Cu2O2 moiety, in which the copper atoms are 3.409 Å apart. The distance between the copper(II) cations in the binuclear subunit is 8.56 atoms (2N + O) of the doubly deprotonated acylhydrazone moiety and the nitrogen atom of the pyridine molecule. One of the copper cation is additionally coordinated to an extra pyridine molecule so that its coordination sphere is completed to a tetragonal pyramid. The second copper atom is involved in additional interaction with the phenoxyl oxygen atom of the neighboring molecule. The EPR spectra of solutions of the binuclear complexes show an isotropic signal of four HFS lines (g o = 2.065–2.143, a Cu = 52.1–66.5 × 10?4 cm?1) typical of mononuclear copper(II) complexes.  相似文献   

17.
The one‐dimensional coordination polymer catena‐poly[diaqua(sulfato‐κO)copper(II)]‐μ2‐glycine‐κ2O:O′], [Cu(SO4)(C2H5NO2)(H2O)2]n, (I), was synthesized by slow evaporation under vacuum of a saturated aqueous equimolar mixture of copper(II) sulfate and glycine. On heating the same blue crystal of this complex to 435 K in an oven, its aspect changed to a very pale blue and crystal structure analysis indicated that it had transformed into the two‐dimensional coordination polymer poly[(μ2‐glycine‐κ2O:O′)(μ4‐sulfato‐κ4O:O′:O′′:O′′)copper(II)], [Cu(SO4)(C2H5NO2)]n, (II). In (I), the CuII cation has a pentacoordinate square‐pyramidal coordination environment. It is coordinated by two water molecules and two O atoms of bridging glycine carboxylate groups in the basal plane, and by a sulfate O atom in the apical position. In complex (II), the CuII cation has an octahedral coordination environment. It is coordinated by four sulfate O atoms, one of which bridges two CuII cations, and two O atoms of bridging glycine carboxylate groups. In the crystal structure of (I), the one‐dimensional polymers, extending along [001], are linked via N—H...O, O—H...O and bifurcated N—H...O,O hydrogen bonds, forming a three‐dimensional framework. In the crystal structure of (II), the two‐dimensional networks are linked via bifurcated N—H...O,O hydrogen bonds involving the sulfate O atoms, forming a three‐dimensional framework. In the crystal structures of both compounds, there are C—H...O hydrogen bonds present, which reinforce the three‐dimensional frameworks.  相似文献   

18.
Zou  Jianzhong  Wu  Yong  Wei  Xianwen  Duan  Chunying  Liu  Yongjiang  Xu  Zheng 《Transition Metal Chemistry》1998,23(4):481-484
Two different products are obtained when 2,3-pyrazinedicarboxylic acid (PzdcH2) reacts separately with two copper(II) salts: Cu(OAc)2 and CuCl2. One product is a mononuclear CuII complex Cu(PzdcH)2·2H2O, the other is a linear polymeric copper(II) complex [Cu(PzdcH)2·2H2O]n, whose structure has been determined by X-ray diffraction at room temperature. The polymeric complex is composed of copper(II) ions, PzdcH- anions and crystal water molecules. The Cu(1) atom is located in elongated octahedral coordination environment with six donor atoms: O(1), N(1), O(1a), N(1a), O(3b) and O(3c) from four different PzdcH- anions. The two oxygen atoms O(3b) and O(3c) come from the carboxylic acid group of the PzdcH- anion of the upper and lower layers, so that an infinite chain constitutes the crystal lattice. There are very strong hydrogen bond interactions between chains which lead to a three-dimensional structure. The magnetic susceptibility of the polymeric complex [Cu(PzdcH)2·2H2O]n has been determined in the 1.5–300K range. A study of magnetic properties shows that a weak antiferromagnetic interaction exists between two copper(II) ions.  相似文献   

19.
A new complex compound bis[(dibenzo-18-crown-6)potassium]bis(μ2-chloro)-tetrachlorodicuprate( II), {[K(Db18c6)]2Cu2Cl6} (I) was prepared and its crystal structure was investigated by XRD analysis. Complex molecule I consist of anion [Cu2Cl6]2− located in a crystallographic center of inversion, and two centrosymmetrical to each other complex cations [K(Db18c6)]+ of “guest-host” type: the cation K+ is located in the cavity of the crown-ligand Db18c6 and is coordinated by all its six O atoms, and also by one Cl atom of anion [Cu2Cl6]2−. The coordination of this cation K+ is enlarged up to hexagonal-bipyramidal due to the formation of unusual coordination bond K+ → π(   相似文献   

20.
Zou  Jianzhong  Wu  Yong  Duan  Chunyin  Liu  Yongjiang  Xu  Zheng 《Transition Metal Chemistry》1998,23(3):305-308
Three binuclear copper(II) complexes bridged by three different bridging ligands: μ-TPHA (terephthalato), μ-PHTA (phthalato) and μ-TCB (tetracarboxylatobenzene) have been synthesized. The crystal structure of [{Cu(dipn)}2(μ-TPHA)](ClO4)2 where dipn = N-(3-aminopropyl)-1,3-propanediamine was solved at room temperature. The [{Cudipn}2(μ-TPHA)](ClO4)2 complex consists of a μ-terephthalato bridging binuclear copper(II) cationic unit and two non-coordinated perchlorate anions. The TPHA ligand bridges in a bismonodentate fashion. The environment of the copper(II) ion is a distorted plane-square-planar coordination sphere. The magnetic properties of the three complexes have been investigated in the 75–300 K range, and show that the geometry of the CuII atom is the important factor for magnetic interactions in the terephthalato bridging binuclear copper(II) complexes. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号