首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Metal–organic framework cathodes usually exhibit low capacity and poor electrochemical performance for Li‐ion storage owing to intrinsic low conductivity and inferior redox activity. Now a redox‐active 2D copper–benzoquinoid (Cu‐THQ) MOF has been synthesized by a simple solvothermal method. The abundant porosity and intrinsic redox character endow the 2D Cu‐THQ MOF with promising electrochemical activity. Superior performance is achieved as a Li‐ion battery cathode with a high reversible capacity (387 mA h g?1), large specific energy density (775 Wh kg?1), and good cycling stability. The reaction mechanism is unveiled by comprehensive spectroscopic techniques: a three‐electron redox reaction per coordination unit and one‐electron redox reaction per copper ion mechanism is demonstrated. This elucidatory understanding sheds new light on future rational design of high‐performance MOF‐based cathode materials for efficient energy storage and conversion.  相似文献   

2.
《化学:亚洲杂志》2017,12(8):868-876
Compared to anode materials in Li‐ion batteries, the research on cathode materials is far behind, and their capacities are much smaller. Thus, in order to address these issues, we believe that organic conjugated materials could be a solution. In this study, we synthesized two non‐polymeric dianhydrides with large aromatic structures: NDA‐4N (naphthalenetetracarboxylic dianhydride with four nitrogen atoms) and PDA‐4N (perylenetetracarboxylic dianhydride with four nitrogen atoms). Their electrochemical properties have been investigated between 2.0 and 3.9 V (vs. Li+/Li). Benefiting from multi‐electron reactions, NDA‐4N and PDA‐4N could reversibly achieve 79.7 % and 92.3 %, respectively, of their theoretical capacity. Further cycling reveals that the organic compound with a relatively larger aromatic building block could achieve a better stability, as an obvious 36.5 % improvement of the capacity retention was obtained when the backbone was switched from naphthalene to perylene. This study proposes an opportunity to attain promising small‐molecule‐based cathode materials through tailoring organic structures.  相似文献   

3.
4.
采用草酸盐共沉淀法制备了钠掺杂改性的Li0.98Na0.02Ni0.6Co0.2Mn0.2O2正极材料,借助X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、能量分散谱(EDS)、感应耦合等离子体原子发射光谱(ICP-AES)、电化学阻抗谱(EIS)和恒电流充放电测试等手段对材料的颗粒形貌、晶体结构和电化学性能进行了研究.结果表明,掺钠后的材料具有更完善的α-NaFeO2结构(空间群为+/Ni2+阳离子混排和更大的Li层间距,易于Li+在晶格中的快速脱嵌迁移.电化学性能测试结果证实掺钠样品具有优异的循环稳定性和高倍率性能,在2.7~4.3 V,1C下循环100次后,放电比容量仍为146 mA·h/g(容量保持率为95.4%),在0.1C,0.2C,0.5C,1C,3C,5C,10C和20C时的放电比容量分别为181,168,162,155,143,136,126和113 mA·h/g.  相似文献   

5.
Li(4)V(3)O(8) materials have been prepared by chemical lithiation by Li(2)S of spherical Li(1.1)V(3)O(8) precursor materials obtained by a spray-drying technique. The over-lithiated vanadates were characterised physically by using scanning electron microscopy (SEM) and X-ray diffraction (XRD), and electrochemically using galvanostatic charge-discharge and cyclic voltammetry measurements in both the half-cell (vs. Li metal) and full-cell (vs. graphite) systems. The Li(4)V(3)O(8) materials are stable in air for up to 5 h, with almost no capacity drop for the samples stored under air. However, prolonged exposure to air will severely change the composition of the Li(4)V(3)O(8) materials, resulting in both Li(1.1)V(3)O(8) and Li(2)CO(3). The electrochemical performance of these over-lithiated vanadates was found to be very sensitive to the conductive additive (carbon black) content in the cathode. When sufficient carbon black is added, the Li(4)V(3)O(8) cathode exhibits good cycling behaviour and excellent rate capabilities, matching those of the Li(1.1)V(3)O(8) precursor material, that is, retaining an average charge capacity of 205 mAh g(-1) at 2800 mA g(-1) (8C rate; 1C rate means full charge or discharge of a battery in one hour), when cycled in the potential range of 2.0-4.0 V versus Li metal. When applied in a non-optimised full cell system (vs. graphite), the Li(4)V(3)O(8) cathode showed promising cycling behaviour, retaining a charge capacity (Li(+) extraction) above 130 mAh g(-1) beyond 50 cycles, when cycled in the voltage range of 1.6-4.0 V, at a specific current of 117 mA g(-1) (C/3 rate).  相似文献   

6.
袁荣忠  瞿美臻  于作龙 《电化学》2003,9(2):211-216
以LiOH·H2O,含镉球状Ni(OH)2和Co2O3为原料,采用改进固相反应法合成镍系复合氧化物LiaNi0.78Co0.2Cd0.02O2锂离子电池正极材料,并通过ICP_AES,XRD,SEM,TEM及电化学性能测试对该材料进行表征.实验表明,由Co和Cd部分取代Ni元素的复合正极材料LiaNi0.78Co0.2Cd0.02O2仍具有较完好的层状结构,表面分布均匀,颗粒粒径分布窄,且电化学性能稳定.常温下具有较高的可逆容量和优异的循环稳定性,其可逆容量最高达157.8mAh/g,循环50次后容量仍保持138.3mAh/g左右.  相似文献   

7.
In spite of recent progress, there is still a lack of reliable organic electrodes for Li storage with high comprehensive performance, especially in terms of long‐term cycling stability. Herein, we report an ideal polymer electrode based on anthraquinone, namely, polyanthraquinone (PAQ), or specifically, poly(1,4‐anthraquinone) (P14AQ) and poly(1,5‐anthraquinone) (P15AQ). As a lithium‐storage cathode, P14AQ showed exceptional performance, including reversible capacity almost equal to the theoretical value (260 mA h g?1; >257 mA h g?1 for AQ), a very small voltage gap between the charge and discharge curves (2.18–2.14=0.04 V), stable cycling performance (99.4 % capacity retention after 1000 cycles), and fast‐discharge/charge ability (release of 69 % of the low‐rate capacity or 64 % of the energy in just 2 min). Exploration of the structure–performance relationship between P14AQ and related materials also provided us with deeper understanding for the design of organic electrodes.  相似文献   

8.
Traditional lithium‐ion batteries that are based on layered Li intercalation electrode materials are limited by the intrinsically low theoretical capacities of both electrodes and cannot meet the increasing demand for energy. A facile route for the synthesis of a new type of composite nanofibers, namely carbon nanofibers decorated with molybdenum disulfide sheets (CNFs@MoS2), is now reported. A synergistic effect was observed for the two‐component anode, triggering new electrochemical processes for lithium storage, with a persistent oxidation from Mo (or MoS2) to MoS3 in the repeated charge processes, leading to an ascending capacity upon cycling. The composite exhibits unprecedented electrochemical behavior with high specific capacity, good cycling stability, and superior high‐rate capability, suggesting its potential application in high‐energy lithium‐ion batteries.  相似文献   

9.
Porous structure Li[Ni1/3Co1/3Mn1/3]O2 has been synthesized via a facile carbonate co‐precipitation method using Li2CO3 as template and lithium‐source. The physical and electrochemical properties of the materials were examined by many characterizations including TGA, XRD, SEM, EDS, TEM, BET, CV, EIS and galvanostatic charge‐discharge cycling. The results indicate that the as‐synthesized materials by this novel method own a well‐ordered layered structure α‐NaFeO2 [space group: R‐3m(166)], porous morphology, and an average primary particle size of about 150 nm. The porous material exhibits larger specific surface area and delivers a high initial capacity of 169.9 mAh·g?1 at 0.1 C (1 C=180 mA·g?1) between 2.7 and 4.3 V, and 126.4, 115.7 mAh·g?1 are still respectively reached at high rate of 10 C and 20 C. After 100 charge‐discharge cycles at 1 C, the capacity retention is 93.3%, indicating the excellent cycling stability.  相似文献   

10.
An alumina surface coating is demonstrated to improve electrochemical performance of MoO3 nanoparticles as high capacity/high‐volume expansion anodes for Li‐ion batteries. Thin, conformal surface coatings were grown using atomic layer deposition (ALD) that relies on self‐limiting surface reactions. ALD coatings were tested on both individual nanoparticles and prefabricated electrodes containing conductive additive and binder. The coated and non‐coated materials were characterized using transmission electron microscopy, energy‐dispersive X‐ray spectroscopy, electrochemical impedance spectroscopy, and galvanostatic charge/discharge cycling. Importantly, increased stability and capacity retention was only observed when the fully fabricated electrode was coated. The alumina layer both improves the adhesion of the entire electrode, during volume expansion/contraction and protects the nanoparticle surfaces. Coating the entire electrode also allows for an important carbothermal reduction process that occurs during electrode pre‐heat treatment. ALD is thus demonstrated as a novel and necessary method that may be employed to coat the tortuous network of a battery electrode.  相似文献   

11.
设计合成了一系列聚酰亚胺基的共轭骨架材料用于锂电池负极.首先,选用具有不同共轭体系的二酐分子用作共聚物构建单元,随后通过亚胺化反应与三聚氰胺共缩聚.最后,通过进一步热处理提高材料的交联程度和稳定性.将该材料用于锂离子电池负极表现出稳定的电化学性能.聚合物的倍率性能测试结果表明:在150 mA·g~(-1)的电流密度下,循环150次后,放电比容量达到471 mAh·g~(-1)以上,在2 A·g~(-1)的较大电流密度下,放电比容量达122.1 mAh·g~(-1),当电流密度返回至100 mA·g~(-1)时,其放电比容量又上升至532.3 mAh·g~(-1)左右,材料具有较好的倍率性能,聚合物材料在充放电过程中,避免了有机小分子材料在与锂离子结合后,易溶于电解液造成的容量损失.同时,共聚物骨架的共轭结构单元和极性基团,可在保证材料的导电性的同时增加材料结合锂离子的能力,因此表现出了优异的倍率性能.  相似文献   

12.
以LiOH·H2O, NH4VO3, NH4H2PO4 和麦芽糖等为原料, 采用水热法合成了碳包覆的磷酸钒锂化合物, 考察了碳含量对材料电化学性能的影响. 利用XRD, TEM, SEM和恒流充放电测试等手段对产物的结构、 形貌和电化学性能进行表征. 结果表明, 在650℃煅烧的样品为单一纯相的单斜晶体结构. 晶体颗粒分布为100~300 nm, 粒度分散均匀, 分散性良好, 无团聚现象, 且在颗粒表面包覆了一层无定形碳, 这有利于改善材料的导电率. 含碳量为10.23%的样品, 在倍率1.0C的电流密度下, 在3.0~4.3 V电压范围内, 样品的首次放电比容量高达118.8 mA·h/g, 循环15圈后放电比容量为115.1 mA·h/g, 容量保持率为96.88%.  相似文献   

13.
固态锂电池具有安全性好、能量密度高等优点,在新能源汽车和智能电子等领域具有广泛的应用前景。然而,由化学/电化学和物理因素引起的界面副反应与高界面阻抗问题制约了其进一步发展。先前的综述已对解决化学/电化学界面问题的方法有了相对全面的阐述,但并未细致讨论不同结构固态电池中物理界面的影响及应对策略。本文将简要介绍化学/电化学界面问题及其解决方案;重点按结构特点将固态锂电池分为三明治结构、粉末复合结构和3D一体化结构,细致地分析不同电池结构的物理界面特点与优化策略,并对各种策略的优缺点进行比较分析;最后,对固态锂电池电极/电解质界面的未来研究方向进行展望。  相似文献   

14.
Porous V(2)O(5) nanotubes, hierarchical V(2)O(5) nanofibers, and single-crystalline V(2)O(5) nanobelts were controllably synthesized by using a simple electrospinning technique and subsequent annealing. The mechanism for the formation of these controllable structures was investigated. When tested as the cathode materials in lithium-ion batteries (LIBs), the as-formed V(2)O(5) nanostructures exhibited a highly reversible capacity, excellent cycling performance, and good rate capacity. In particular, the porous V(2)O(5) nanotubes provided short distances for Li(+)-ion diffusion and large electrode-electrolyte contact areas for high Li(+)-ion flux across the interface; Moreover, these nanotubes delivered a high power density of 40.2?kW?kg(-1) whilst the energy density remained as high as 201?W?h?kg(-1), which, as one of the highest values measured on V(2)O(5)-based cathode materials, could bridge the performance gap between batteries and supercapacitors. Moreover, to the best of our knowledge, this is the first preparation of single-crystalline V(2)O(5) nanobelts by using electrospinning techniques. Interestingly, the beneficial crystal orientation provided improved cycling stability for lithium intercalation. These results demonstrate that further improvement or optimization of electrochemical performance in transition-metal-oxide-based electrode materials could be realized by the design of 1D nanostructures with unique morphologies.  相似文献   

15.
Confining lithium polysulfide intermediates is one of the most effective ways to alleviate the capacity fade of sulfur‐cathode materials in lithium–sulfur (Li–S) batteries. To develop long‐cycle Li–S batteries, there is an urgent need for material structures with effective polysulfide binding capability and well‐defined surface sites; thereby improving cycling stability and allowing study of molecular‐level interactions. This challenge was addressed by introducing an organometallic molecular compound, ferrocene, as a new polysulfide‐confining agent. With ferrocene molecules covalently anchored on graphene oxide, sulfur electrode materials with capacity decay as low as 0.014 % per cycle were realized, among the best of cycling stabilities reported to date. With combined spectroscopic studies and theoretical calculations, it was determined that effective polysulfide binding originates from favorable cation–π interactions between Li+ of lithium polysulfides and the negatively charged cyclopentadienyl ligands of ferrocene.  相似文献   

16.
Solid polymer electrolytes with relatively low ionic conductivity at room temperature and poor mechanical strength greatly restrict their practical applications. Herein, we design semi-interpenetrating network polymer (SNP) electrolyte composed of an ultraviolet-crosslinked polymer network (ethoxylated trimethylolpropane triacrylate), linear polymer chains (polyvinylidene fluoride-co-hexafluoropropylene) and lithium salt solution to satisfy the demand of high ionic conductivity, good mechanical flexibility, and electrochemical stability for lithium metal batteries. The semi-interpenetrating network has a pivotal effect in improving chain relaxation, facilitating the local segmental motion of polymer chains and reducing the polymer crystallinity. Thanks to these advantages, the SNP electrolyte shows a high ionic conductivity (1.12 mS cm−1 at 30 °C), wide electrochemical stability window (4.6 V vs. Li+/Li), good bendability and shape versatility. The promoted ion transport combined with suppressed impedance growth during cycling contribute to good cell performance. The assembled quasi-solid-state lithium metal batteries (LiFePO4/SNP/Li) exhibit good cycling stability and rate capability at room temperature.  相似文献   

17.
CaSnO3 with the distorted-perovskite structure was prepared by sol–gel and high temperature solid-state reaction and electrochemical properties were studied in cell with Li as counter electrode. The sol–gel method gave uniform nano-crystallites (200–300 nm) of CaSnO3 and was shown to deliver a reversible capacity of 380 mAh/g (0.005–1.0 V; 60 mA/g) with good cycling stability up to 45 cycles. The observed capacity involved in the first-discharge and the reversible capacity values during subsequent charge–discharge cycles show that the electrochemical process in CaSnO3 is similar to other Sn-containing mixed oxide systems, viz., an initial structural reduction with Sn-metal formation followed by reversible Li–Sn alloy formation. The performance with respect to the attainable capacity, its retention on charge–discharge cycling and rate capability is better than the previously reported best-performing bulk Sn-oxide or ATCO starting materials which reveals that the perovskite structure and Ca-ion play a beneficial role.  相似文献   

18.
MOFs材料作为一类新型的锂离子电池电极材料而受到广泛关注和研究. 作者通过溶液扩散法将Co3(HCOO)6原位负载在 rGO(还原氧化石墨烯)上制备出Co3(HCOO)6@rGO复合材料. 将Co3(HCOO)6@rGO作为锂离子电池负极材料,以500 mA·g-1的电流密度恒电流充放电循环 100 周后,仍然保持有 926 mAh·g-1 的比容量,亦表现出很好的倍率性能. 循环伏安和X-射线光电子能谱测试表明,Co3(HCOO)6@rGO材料上的Co2+和甲酸根在充放电过程中均发生可逆的电化学反应. 对比同样采用溶液扩散法合成的 Co3(HCOO)6 的测试结果发现,rGO起到活化甲酸根的电化学反应的作用,同时也改善了Co3(HCOO)6的倍率性能. 将MOFs材料与rGO复合为优化 MOFs 材料的电池性能提供了一个新思路.  相似文献   

19.
水热法是广泛应用于锂离子电池Si@C电极材料的一种制备方法,其反应条件是影响产物最终形貌和性能的重要因素, 采取最佳的反应工艺可以大大提升材料的电化学性能。本研究中, 使用葡萄糖作为碳源, 光伏切割废料硅为硅源, 探究了水热法制备核壳结构Si@C电极材料的最优工艺, 分别研究了温度、 原料浓度、 反应时间和原料比例对产物的形貌、 性能的影响以及相互之间的关系, 并得到最佳反应条件。在该条件下(葡萄糖浓度为0.5 mol·L-1, 硅与葡萄糖重量比为0.3:1, 反应温度190 oC, 反应时间9 h), 得到了包覆完整、 粒径适中的Si@C电极材料(CS190-3), 对以该样品为负极的扣式半电池进行电化学测试, 在655 mA·g-1的电流密度下, 其首圈放电比容量为3369.5 mAh·g-1, 经过500次循环剩余容量为1405.0 mAh·g-1。倍率测试中, 在6550 mA·g-1的电流密度下,其剩余容量为937.1 mAh·g-1,当电流密度恢复至655 mA·g-1时,电池放电比容量仍可恢复至1683.0 mAh·g-1。  相似文献   

20.
The metallically conductive bis(diimino)nickel framework (NiDI), an emerging class of metal–organic framework (MOF) analogues consisting of two‐dimensional (2D) coordination networks, was found to have an energy storage principle that uses both cation and anion insertion. This principle gives high energy led by a multielectron transfer reaction: Its specific capacity is one of the highest among MOF‐based cathode materials in rechargeable energy storage devices, with stable cycling performance up to 300 cycles. This mechanism was studied by a wide spectrum of electrochemical techniques combined with density‐functional calculations. This work shows that a rationally designed material system of conductive 2D coordination networks can be promising electrode materials for many types of energy devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号