首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
用3-氨丙基三乙氧基硅烷(KH550)作偶联剂, 在毛细管内壁上逐步合成树枝形大分子聚酰胺-胺(PAMAM), 制得了1, 2和3代PAMAM键合的开管毛细管电色谱柱, 并对其性能进行了研究. 结果表明, 随着大分子代数的增加, 毛细管电渗流(EOF)逐步下降. 利用制得的1, 2和3代PAMAM修饰的开管毛细管电色谱柱对丙氨酸和脯氨酸的分离进行对比, 结果显示, 随着大分子PAMAM代数的增加, 分离度逐步增大, 丙氨酸和脯氨酸可在3代树枝状大分子PAMAM修饰的开管毛细管电色谱柱上达到基线分离. 采用非衍生化法和3代PAMAM修饰的开管毛细管电色谱柱成功地分析了精氨酸、 丙氨酸、 脯氨酸、 甲硫氨酸和组氨酸. 结果表明, 键合毛细管柱具有良好的重现性和稳定性.  相似文献   

2.
本文通过原位聚合反应合成了一种基于纤维状二氧化硅纳米(fSiO_2)和聚合物(DMAEMA polymer)的材料(P-fSiO_2),将该材料采用物理吸附的方式涂覆到毛细管内壁,制备了新型的毛细管电色谱开管柱(P-fSiO_2开管柱),并将其应用于磺胺类物质的开管毛细管电色谱(OT-CEC)分离分析。P-fSiO_2开管柱的制备方法简便快捷、涂层稳定、重复性好,其中日内相对标准偏差(RSD)值小于4.3%(n=6),日间RSD小于4.9%(n=6),柱间RSD为2.2%(n=5)。通过对缓冲溶液浓度、pH值以及分离电压等因素的考察,可以实现对8种磺胺类化合物的良好分离,其中磺胺喹恶啉(SQX)的柱效高达228 542 N/m。  相似文献   

3.
开管毛细管电色谱进展   总被引:5,自引:0,他引:5  
开管毛细管电色谱是近年发展起来的一种高效、快速的新型微柱分离方法。它是在毛细管管壁涂布或键合固定相,以电渗流驱动流动相的一种色谱分离模式。该文对开管毛细管电色谱的发展、柱制备、理论进行了较为详细的综述,引用文献47篇  相似文献   

4.
制备了3-氨丙基键合毛细管开管柱,在此柱上以氨水/甲醇(体积比30∶70)溶液为溶剂,采用毛细管电泳法有效地分离了八种中性芳香族化合物.实验中考察了电色谱条件如:氨水浓度、表面活性剂十二烷基硫酸钠(SDS)浓度及电压等对分离度的影响.结果表明八种中性芳香族化合物在该柱上的分离效果和重现性良好.  相似文献   

5.
毛细管电色谱(CEC)是近年发展起来的一种高效、快速微柱分离方法,主要分为填充毛细管电色谱,开管毛细管电色谱和整体式毛细管电色谱.开管毛细管电色谱无柱塞和填料,不易产生气泡,且无涡流扩散,能获得较高柱效,其电渗流流速比填充柱大60%,适用于快速分析,具有良好的应用前景.  相似文献   

6.
在毛细管中原位合成反相整体色谱柱,并在同一根毛细管柱中的其余部分通过在内表面涂覆N-[3-(三甲氧基硅烷)-丙基)]-乙二胺(PEDA)使其具有离子交换功能,制备成连续二维开管离子交换/反相整体柱毛细管电色谱柱.通过对7种有机酸的分离探讨了开管柱中离子交换对分离的影响,进一步以天麻提取物为样品,对二维分离系统加以评价,...  相似文献   

7.
毛细管电色谱 ( Capillary electrochromatography,简称 CEC)是近年发展起来的一种高效、快速的新型微柱分离方法 [1~ 4] .由于它在毛细管柱内填充液相色谱固定相或者在毛细管内壁键合固定相 ,且采用电渗流作为驱动力 ,因而兼有高效液相色谱和毛细管电泳的分离特点 ,已应用于复杂的药物分析 [2 ] .填充柱毛细管柱具有工艺要求高、容易产生气泡、焦耳热和价格昂贵等缺点 .开管柱电色谱( Open- tubular CEC,简称 OTCEC)是将固定相键合或涂覆在毛细管的内壁 ,避免了上述缺陷 .因此已引起高度重视 [3,4] .大环多胺的结构与冠醚类似 ,是一…  相似文献   

8.
以脲氨基-β-环糊精硅基衍生物为手性单体,1,2-二(三乙氧基硅烷)乙烷(BTEE)为硅源,十六烷基三甲基溴化铵(CTAB)为模板,采用水热合成法制备脲氨基β-环糊精衍生物/硅基手性杂化材料(β-CD/PMOs)。以其为手性固定相制备一种新型毛细管电色谱开管柱,通过IR和SEM对固定相的结构和形貌进行表征。结果表明,固定相成功键合在毛细管内,并保留了固定相原有的球形结构。以硫脲为标记物,测得平均柱效在11698.4 plates/m以上,日内、日间及柱间柱效的相对标准偏差(RSD)(n=7)均≤1.31%,且成功拆分D,L-组氨酸,达到基线分离。可见,该开管柱具有良好的重现性、稳定性和手性拆分能力。  相似文献   

9.
采用微波辅助合成技术,快速制备了以替考拉宁为固定相的开管毛细管电色谱柱。在pH 4.0~7.0的范围内比较了空管与替考拉宁修饰柱的电渗情况,表明替考拉宁开管毛细管电色谱柱有效地降低了电渗。用该色谱柱分离了多种手性对映体,均达到基线分离,体现了替考拉宁开管毛细管电色谱柱良好的分离性能。以DL-色氨酸考察了柱子的稳定性和重现性,结果显示采用微波辅助合成技术制得的替考拉宁开管毛细管电色谱柱具有良好的稳定性和重现性。  相似文献   

10.
采用离子交联法制得纳米壳聚糖粒子溶液,通过静电吸附作用将其修饰于石英毛细管内表面形成涂层毛细管柱.通过场发射扫描电子显微镜观察到毛细管内壁有小丘状突起,表明纳米壳聚糖粒子已吸附于柱内层.检测了不同p H值下的电渗流变化趋势并与裸柱比较,结果显示修饰后的柱电渗流受到明显抑制,并在p H4.7的环境中能产生反向电渗流,该柱在不同p H值下电渗流的相对标准偏差(RSD)6%,日内、日间和柱间的RSD分别为1.46%,4.64%和14.43%,表明柱稳定性较好.通过分离3种中性物质甲苯、苯酚和硫脲考察了该柱的色谱行为,出峰顺序与其极性大小顺序一致,表明纳米涂层起到极性固定相的作用.用该柱成功分离了3种碱性蛋白质溶菌酶、细胞色素c和核糖核酸酶A,柱效分别为39481,42610和245373Plate/m,重现性良好,表明纳米涂层可有效抑制碱性蛋白质的吸附作用.  相似文献   

11.
Zhou S  Tan J  Chen Q  Lin X  Lü H  Xie Z 《Journal of chromatography. A》2010,1217(52):8346-8351
A novel open tubular (OT) column covalently modified with hydrophilic polysaccharide, carboxymethylchitosan (CMC) as stationary phase has been developed, and employed for the separations of basic proteins and opium alkaloids by capillary electrochromatography (CEC). With the procedures including the silanization of 3-aminopropyltrimethoxysilane (APTS) and the combination of glutaraldehyde with amino-silylated silica surface and CMC, CMC was covalently bonded on the capillary inner wall and exhibited a remarkable tolerance and chemical stability against 0.1 mol/L HCl, 0.1 mol/L NaOH or some organic solvents. By varying the pH values of running buffer, a cathodic or anodic EOF could be gained in CMC modified column. With anodic EOF mode (pH<4.3), favorable separations of basic proteins (trypsin, ribonuclease A, lysozyme and cytochrome C) were successfully achieved with high column efficiencies ranging from 97,000 to 182,000 plates/m, and the undesired adsorptions of basic proteins on the inter-wall of capillary could be avoided. Good repeatability was gained with RSD of the migration time less than 1.3% for run-to-run (n=5) and less than 3.2% for day-to-day (n=3), RSD of peak area was less than 5.6% for run-to-run (n=5) and less than 8.8% for day-to-day (n=3). With cathodic EOF mode (pH>4.3), four opium alkaloids were also baseline separated in phosphate buffer (50 mmol/L, pH 6.0) with column efficiencies ranging from 92,000 to 132,000 plates/m. CMC-bonded OT capillary column might be used as an alternative medium for the further analysis of basic proteins and alkaline analytes.  相似文献   

12.
A multi‐functional separation column modified with 3‐[2‐(2‐aminoethylamino)ethylamino] propyl‐trimethoxysilane was developed for open tubular capillary electrochromatography. This functional hydrophilic triamine‐bonded open tubular column could generate both anodic and cathodic EOF. When the pH of the running buffer was below 5.3 (30% 3‐[2‐(2‐aminoethylamino)ethylamino] propyl‐trimethoxysilane, v/v), the anodic EOF was exhibited, which greatly prevented the undesired adsorptions of basic proteins on the capillary inner wall. Favorable separation of four basic proteins (viz. trypsin, ribonuclease A, lysozyme and cytochrome c) was successfully achieved at pH 3.5 of 10 mmol/L phosphate buffer. The column efficiencies of proteins were in the range from 87 000 to 110 000 plates/m, and the RSD values for migration time of four proteins were less than 1.2% (run‐to‐run, n=5). The ionic analytes were also separated efficiently in the co‐electroosmotic mode. The average efficiencies ranged from 81 000 to 190 000 plates/m for seven aromatic acids and 186 000–245 000 plates/m for four nucleoside monophosphates, respectively, and good capillary column repeatability was gained with RSD of the migration time not more than 3.0%. The triamine‐bonded open tubular capillary column is favorable to be an alternative functional medium for the further analysis of basic proteins and anionic analytes.  相似文献   

13.
Xu L  Sun Y 《Electrophoresis》2008,29(4):880-888
A novel stationary phase with tentacle-type polymer chains with epoxy groups was fabricated for open tubular CEC. The fabrication procedure of the stationary phase included pretreatment of capillary inner wall, silanization, and glycidyl methacrylate (GMA)-grafted polymerization. The influence of initiator concentration and polymerization time on the resulting polymer stationary phase was studied by measuring EOF mobility and hydrophobicity of the prepared capillary column. SEM showed that the capillary inner wall was evenly coated with a polymer film showing a wrinkly surface. The prepared GMA-grafted stationary phase could be easily modified with different chromatographic ligands by the ring-opening reaction of the epoxy groups. In this study, phenylalanine (Phe) was selected as the ligand. Benzene derivatives and three amino acids were then separated, respectively, using the Phe modified tentacle-type capillary column. As a control, separations were also performed on a monolayer Phe-modified capillary. The tentacle-type polymer stationary phase was found affording stronger retention and better resolution in the separation of benzene derivatives and tryptophan, tyrosine, and Phe mixtures compared with the monolayer stationary phase.  相似文献   

14.
Polystyrene (PS) nanoparticles coated by BSA, hereafter denoted as PS/BSA, were prepared and chemically immobilized for the first time onto a capillary inner wall for open‐tubular CEC (OTCEC). EOF and scanning electron micrography were used to characterize the prepared nanoparticle‐coated capillaries. To investigate the performance of the prepared columns in OTCEC, chiral separation of d ,l ‐tryptophan (dl ‐Trp) was performed in monolayer BSA‐modified capillary and PS/BSA nanoparticle‐coated columns. The results indicated that the nanoparticle‐modified column afforded a higher resolution compared with the monolayer type. Rapid enantioseparation of dl ‐Trp (within 3 min) was achieved with the PS/BSA‐immobilized column using an electroosmotic pump‐assisted CEC. Enantiomer separations of other compounds like dl ‐tyrosine and warfarin were also achieved with the column. Besides, run‐to‐run and column‐to‐column repeatabilities of the PS/BSA‐coated column in the chiral separation were systematically introduced.  相似文献   

15.
以甲基丙烯酸缩水甘油酯(GMA)和乙二醇二甲基丙烯酸酯(EDMA)为前驱体制备了新型聚合物多孔涂层毛细管开管(PLOT)柱固定相。通过优化聚合反应时间、致孔剂比例及交联剂比例获得了色谱性能良好的PLOT柱,扫描电镜结果显示毛细管柱内的多孔涂层厚度适中且均匀。在毛细管电色谱模式下,PLOT柱以反相色谱分离机理有效分离了中性、酸性和碱性小分子。人血清白蛋白(HSA)共价结合的蛋白亲和PLOT柱对5对手性对映体实现了较好的分离,且其分离度远高于HSA修饰的单层聚合物毛细管开管柱。PLOT柱分离烷基苯的日内、日间和柱间的相对标准偏差分别小于1.7%、4.8%和7.8%。  相似文献   

16.
《Electrophoresis》2018,39(7):941-947
In this paper, β‐cyclodextrin (β‐CD) modified gold nanoparticles (AuNPs) coated open tubular column (OT column) was prepared for capillary electrochromatography. The open tubular column was constructed through self‐assembly of gold nanoparticles on 3‐mercaptopropyl‐trimethoxysilane (MPTMS) prederivatized capillary and subsequent modification of thiols β‐cyclodextrin (SH‐β‐CD). Scanning electron microscopy (SEM), transmission electron microscopy (TEM) and ultraviolet visible spectroscopy were carried out to characterize the prepared open tubular column and synthesized gold nanoparticles. By comparing different coating times of gold nanoparticles and thiols β‐cyclodextrin, we got the optimal conditions for preparing the open tubular column. Also, the separation parameters were optimized including buffer pH, buffer concentration and applied voltage. Separation effectiveness of open tubular column was verified by the separation of four pairs of drug enantiomers including bifonazole, fexofenadine, omeprazole and lansoprazole, and satisfactory separation results were achieved for these analytes studied. In addition, the column showed good stability and repeatability. The relative standard deviation values less than 5% were obtained through intra‐day, inter‐day, and column‐to‐column investigations.  相似文献   

17.
In this work, we developed a capillary column modified with zeolitic imidazolate framework‐8 as a novel stationary phase for open‐tubular capillary electrochromatography. To immobilize zeolitic imidazolate framework‐8 onto the inner surface of silica capillary, a bio‐inspired polydopamine functionalization was used to functionalize the capillary surface with polydopamine. First, a polydopamine layer was assembled inside the capillary. Second, due to noncovalent adsorption and covalent reaction ability, polydopamine could attract and anchor zeolitic imidazolate framework‐8 onto the inner surface of capillary. It has been demonstrated that zeolitic imidazolate framework‐8 was successfully grafted on the inner wall of the capillary by scanning electron microscopy, and Fourier transform infrared spectroscopy. The electro‐osmotic flow characteristics of capillaries were also investigated by varying the pH value and acetonitrile content of mobile phase. The zeolitic imidazolate framework‐8 coating not only increased the phase ratio of open‐tubular column, but also improved the interactions between tested analytes and the stationary phase. Three groups of isomers including acidic, basic, and neutral compounds were well separated on the zeolitic imidazolate framework‐8 bonded column, with theoretic plate numbers up to 1.9 × 105 N for catechol. The repeatability of the prepared columns was also studied, and the relative standard deviations for intra‐ and interday runs were less than 5%.  相似文献   

18.
Mo H  Zhu L  Xu W 《Journal of separation science》2008,31(13):2470-2475
Separation of inorganic anions in CE is often a challenging task because the electrophoretic mobilities of inorganic anions are comparable to or even greater than the EOF mobility. In this study, we present the use of ionic liquids (ILs) as background electrolytes (BGEs) in CE of inorganic anions. The 1-alkyl-3-methylimidazolium-based ILs as BGEs dynamically coated the capillary wall and induced a reversed EOF. This allowed the anions to comigrate with the EOF and yielded a rapid separation. Increasing the alkyl chain length of the ILs and BGE concentration can significantly improve the separation resolution. With 40 mM 1-butyl-3-methylimidazolium tetrafluoroborate as BGE, good separations of five model anions (Br-, I-, NO2(-), NO3(-), and SCN-) were achieved in a range of buffer pH values. The separation efficiency was as high as 34 600-155 000, and the RSDs of the migration times were less than 0.8% (n = 5).  相似文献   

19.
E Wen  A S Rathore  C Horváth 《Electrophoresis》2001,22(17):3720-3727
A major impediment to enhancing the speed of separation in capillary electrochromatography (CEC) is the upper limit on the electroosmotic flow (EOF) velocity by the maximal zeta potential of the chromatographic surface. Here, a new approach to speeding up EOF, suggested by Yang and El Rassi (Electrophoresis 1999, 20,18-23), is examined critically. It entails the use of a tandem arrangement of a separating column and an auxiliary column, the sole function of which is to boost EOF velocity in the separating column and thus facilitate faster analysis by CEC. Based on the principle of conservation of mass and current and using experimental data obtained in a wide range of conditions, the flow velocities in the separating and auxiliary columns were evaluated. The results show that an equidiameter open tubular auxiliary column offers a greater enhancement of EOF velocity than a packed column. Nevertheless, within the scope of the experiments the enhancement of EOF velocity by as much as 50% by using open tubular auxiliary columns has been obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号