首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we obtain global well-posedness for the 2D dispersive SQG equation and inviscid Boussinesq equations. Our works are consistent with the corresponding works by Elgindi–Widmayer (SIAM J Math Anal 47:4672–4684, 2015) in the special case \({A=\kappa=1}\). In addition, our result concerning the SQG equation can be regarded as the borderline case of the work by Cannone et al. (Proc Lond Math Soc 106:650–674, 2013).  相似文献   

2.
In this note, we present perturbation analysis for the total least squares (Tls) problems under the genericity condition. We review the three condition numbers proposed respectively by Zhou et al. (Numer. Algorithm, 51 (2009), pp. 381–399), Baboulin and Gratton (SIAM J. Matrix Anal. Appl. 32 (2011), pp. 685–699), Li and Jia (Linear Algebra Appl. 435 (2011), pp. 674–686). We also derive new perturbation bounds.  相似文献   

3.
In this paper, the first two terms on the right-hand side of the Broyden–Fletcher–Goldfarb–Shanno update are scaled with a positive parameter, while the third one is also scaled with another positive parameter. These scaling parameters are determined by minimizing the measure function introduced by Byrd and Nocedal (SIAM J Numer Anal 26:727–739, 1989). The obtained algorithm is close to the algorithm based on clustering the eigenvalues of the Broyden–Fletcher–Goldfarb–Shanno approximation of the Hessian and on shifting its large eigenvalues to the left, but it is not superior to it. Under classical assumptions, the convergence is proved by using the trace and the determinant of the iteration matrix. By using a set of 80 unconstrained optimization test problems, it is proved that the algorithm minimizing the measure function of Byrd and Nocedal is more efficient and more robust than some other scaling Broyden–Fletcher–Goldfarb–Shanno algorithms, including the variants of Biggs (J Inst Math Appl 12:337–338, 1973), Yuan (IMA J Numer Anal 11:325–332, 1991), Oren and Luenberger (Manag Sci 20:845–862, 1974) and of Nocedal and Yuan (Math Program 61:19–37, 1993). However, it is less efficient than the algorithms based on clustering the eigenvalues of the iteration matrix and on shifting its large eigenvalues to the left, as shown by Andrei (J Comput Appl Math 332:26–44, 2018, Numer Algorithms 77:413–432, 2018).  相似文献   

4.
We present a local convergence analysis of a two-point four parameter Jarratt-like method of high convergence order in order to approximate a locally unique solution of a nonlinear equation. In contrast to earlier studies such us (Amat et al. Aequat. Math. 69(3), 212–223 2015; Amat et al. J. Math. Anal. Appl. 366(3), 24–32 2010; Behl, R. 2013; Bruns and Bailey Chem. Eng. Sci. 32, 257–264 1977; Candela and Marquina. Computing 44, 169–184 1990; Candela and Marquina. Computing 45(4), 355–367 1990; Chun. Appl. Math. Comput. 190(2), 1432–1437 2007; Cordero and Torregrosa. Appl. Math. Comput. 190, 686–698 2007; Deghan. Comput. Appl Math. 29(1), 19–30 2010; Deghan. Comput. Math. Math. Phys. 51(4), 513–519 2011; Deghan and Masoud. Eng. Comput. 29(4), 356–365 15; Cordero and Torregrosa. Appl. Math. Comput. 190, 686–698 2012; Deghan and Masoud. Eng. Comput. 29(4), 356–365 2012; Ezquerro and Hernández. Appl. Math. Optim. 41(2), 227–236 2000; Ezquerro and Hernández. BIT Numer. Math. 49, 325–342 2009; Ezquerro and Hernández. J. Math. Anal. Appl. 303, 591–601 2005; Gutiérrez and Hernández. Comput. Math. Appl. 36(7), 1–8 1998; Ganesh and Joshi. IMA J. Numer. Anal. 11, 21–31 1991; González-Crespo et al. Expert Syst. Appl. 40(18), 7381–7390 2013; Hernández. Comput. Math. Appl. 41(3-4), 433–455 2001; Hernández and Salanova. Southwest J. Pure Appl. Math. 1, 29–40 1999; Jarratt. Math. Comput. 20(95), 434–437 1966; Kou and Li. Appl. Math. Comput. 189, 1816–1821 2007; Kou and Wang. Numer. Algor. 60, 369–390 2012; Lorenzo et al. Int. J. Interact. Multimed. Artif. Intell. 1(3), 60–66 2010; Magreñán. Appl. Math. Comput. 233, 29–38 2014; Magreñán. Appl. Math. Comput. 248, 215–224 2014; Parhi and Gupta. J. Comput. Appl. Math. 206(2), 873–887 2007; Rall 1979; Ren et al. Numer. Algor. 52(4), 585–603 2009; Rheinboldt Pol. Acad. Sci. Banach Ctr. Publ. 3, 129–142 1978; Sicilia et al. J. Comput. Appl. Math. 291, 468–477 2016; Traub 1964; Wang et al. Numer. Algor. 57, 441–456 2011) using hypotheses up to the fifth derivative, our sufficient convergence conditions involve only hypotheses on the first Fréchet-derivative of the operator involved. The dynamics of the family for choices of the parameters such that it is optimal is also shown. Numerical examples are also provided in this study  相似文献   

5.
This note presents a commutant lifting theorem (CLT) of Agler type for the annulus \({\mathbb A}\) . Here the relevant set of test functions are the minimal inner functions on \({\mathbb A}\) —those analytic functions on \({\mathbb A}\) which are unimodular on the boundary and have exactly two zeros in \({\mathbb A}\) —and the model space is determined by a distinguished member of the Sarason family of kernels over \({\mathbb A}\) . The ideas and constructions borrow freely from the CLT of Ball et al. (Indiana Univ Math J 48(2):653–675, 1999) and Archer (Unitary dilations of commuting contractions. PhD thesis, University of Newcastle, 2004) for the polydisc, and Ambrozie and Eschmeier (A commutant lifting theorem on analytic polyhedra. Topological algebras, their applications, and related topics, 83108, Banach Center Publications, vol 67. Polish Academy of Sciences, Warsaw, 2005) for the ball in \({\mathbb C^n}\) , as well as generalizations of the de Branges–Rovnyak construction like found in Agler (On the representation of certain holomorphic functions defined on a polydisc. Topics in operator theory: Ernst D. Hellinger memorial volume, operator theory: advances and applications, vol 48. Birkhäuser, Basel, pp 47–66, 1990) and Ambrozie et al. (J Oper Theory 47(2):287–302, 2002). It offers a template for extending the result in McCullough and Sultanic (Complex Anal Oper Theory 1(4):581–620, 2007) to infinitely many test functions. Among the needed new ingredients is the formulation of the factorization implicit in the statement of the results in Ball et al. (Indiana Univ Math J 48(2):653–675, 1999) and Archer (Unitary dilations of commuting contractions. PhD thesis, University of Newcastle, 2004) and McCullough and Sultanic (Complex Anal Oper Theory 1(4):581–620, 2007) in terms of certain functional Hilbert spaces of Hilbert space valued functions.  相似文献   

6.
The focal submanifolds of isoparametric hypersurfaces in spheres are all minimal Willmore submanifolds, mostly being \({\mathcal{A}}\) -manifolds in the sense of A.Gray but rarely Ricci-parallel, see Li et al. (Sci China Math 58, 2015), Qian et al. (Ann Glob Anal Geom 43:47–62, 2013), Tang and Yan (Isoparametric foliation and a problem of Besse on generalizations of Einstein condition arXiv:1307.3807, 2013). In this paper we study the geometry of the focal submanifolds via Simons formula. We show that all the focal submanifolds with g ≥ 3 are not normally flat by estimating the normal scalar curvatures. Moreover, we give a complete classification of the semiparallel submanifolds among the focal submanifolds.  相似文献   

7.
In this paper we provide a proof of the Sobolev–Poincaré inequality for variable exponent spaces by means of mass transportation methods, in the spirit of Cordero-Erausquin et al. (Adv Math 182(2):307–332, 2004). The importance of this approach is that the method is flexible enough to deal with different inequalities. As an application, we also deduce the Sobolev-trace inequality improving the result of Fan (J Math Anal Appl 339(2):1395–1412, 2008) by obtaining an explicit dependence of the exponent in the constant.  相似文献   

8.
We present a local convergence analysis of Gauss-Newton method for solving nonlinear least square problems. Using more precise majorant conditions than in earlier studies such as Chen (Comput Optim Appl 40:97–118, 2008), Chen and Li (Appl Math Comput 170:686–705, 2005), Chen and Li (Appl Math Comput 324:1381–1394, 2006), Ferreira (J Comput Appl Math 235:1515–1522, 2011), Ferreira and Gonçalves (Comput Optim Appl 48:1–21, 2011), Ferreira and Gonçalves (J Complex 27(1):111–125, 2011), Li et al. (J Complex 26:268–295, 2010), Li et al. (Comput Optim Appl 47:1057–1067, 2004), Proinov (J Complex 25:38–62, 2009), Ewing, Gross, Martin (eds.) (The merging of disciplines: new directions in pure, applied and computational mathematics 185–196, 1986), Traup (Iterative methods for the solution of equations, 1964), Wang (J Numer Anal 20:123–134, 2000), we provide a larger radius of convergence; tighter error estimates on the distances involved and a clearer relationship between the majorant function and the associated least squares problem. Moreover, these advantages are obtained under the same computational cost.  相似文献   

9.
Theorems due to Stenger (Bull Am Math Soc 74:369–372, 1968) and Nudelman (Int Equ Oper Theory 70:301–305, 2011) in Hilbert spaces and their generalizations to Krein spaces in Azizov and Dijksma (Int Equ Oper Theory 74(2):259–269, 2012) and Azizov et al. (Linear Algebra Appl 439:771–792, 2013) generate additional questions about properties a finite-codimensional compression \({T_0}\) of a symmetric or self-adjoint linear relation \({T}\) may or may not inherit from \({T}\). These questions concern existence of invariant maximal nonnegative subspaces, definitizability, singular critical points and defect indices.  相似文献   

10.
We consider the amplitude equation for nonlinear surface wave solutions of hyperbolic conservation laws. This is an asymptotic nonlocal, Hamiltonian evolution equation with quadratic nonlinearity. For example, this equation describes the propagation of nonlinear Rayleigh waves (Hamilton et al. in J Acoust Soc Am 97:891–897, 1995), surface waves on current-vortex sheets in incompressible MHD (Alì and Hunter in Q Appl Math 61(3):451–474, 2003; Alì et al. in Stud Appl Math 108(3):305–321, 2002) and on the incompressible plasma–vacuum interface (Secchi in Q Appl Math 73(4):711–737, 2015). The local-in-time existence of smooth solutions to the Cauchy problem for the amplitude equation in noncanonical variables was shown in Hunter (J Hyperbolic Differ Equ 3(2):247–267, 2006), Secchi (Q Appl Math 73(4):711–737, 2015). In the present paper we prove the continuous dependence in strong norm of solutions on the initial data. This completes the proof of the well-posedness of the problem in the classical sense of Hadamard.  相似文献   

11.
High-order differentiation matrices as calculated in spectral collocation methods usually include a large round-off error and have a large condition number (Baltensperger and Berrut Computers and Mathematics with Applications 37(1), 41–48 1999; Baltensperger and Trummer SIAM J. Sci. Comput. 24(5), 1465–1487 2003; Costa and Don Appl. Numer. Math. 33(1), 151–159 2000). Wang et al. (Wang et al. SIAM J. Sci. Comput. 36(3), A907–A929 2014) present a method to precondition these matrices using Birkhoff interpolation. We generalize this method for all orders and boundary conditions and allowing arbitrary rows of the system matrix to be replaced by the boundary conditions. The preconditioner is an exact inverse of the highest-order differentiation matrix in the equation; thus, its product with that matrix can be replaced by the identity matrix. We show the benefits of the method for high-order differential equations. These include improved condition number and, more importantly, higher accuracy of solutions compared to other methods.  相似文献   

12.
The famous for its simplicity and clarity Newton–Kantorovich hypothesis of Newton’s method has been used for a long time as the sufficient convergence condition for solving nonlinear equations. Recently, in the elegant study by Hu et al. (J Comput Appl Math 219:110–122, 2008), a Kantorovich-type convergence analysis for the Gauss–Newton method (GNM) was given improving earlier results by Häubler (Numer Math 48:119–125, 1986), and extending some results by Argyros (Adv Nonlinear Var Inequal 8:93–99, 2005, 2007) to hold for systems of equations with constant rank derivatives. In this study, we use our new idea of recurrent functions to extend the applicability of (GNM) by replacing existing conditions by weaker ones. Finally, we provide numerical examples to solve equations in cases not covered before (Häubler, Numer Math 48:119–125, 1986; Hu et al., J Comput Appl Math 219:110–122, 2008; Kontorovich and Akilov 2004).  相似文献   

13.
Despite the development of sophisticated techniques such as sequential Monte Carlo (Del Moral et al. in J R Stat Soc Ser B 68(3):411–436, 2006), importance sampling (IS) remains an important Monte Carlo method for low dimensional target distributions (Chopin and Ridgway in Leave Pima Indians alone: binary regression as a benchmark for Bayesian computation, 32:64–87, 2017). This paper describes a new technique for constructing proposal distributions for IS, using affine arithmetic (de Figueiredo and Stolfi in Numer Algorithms 37(1–4):147–158, 2004). This work builds on the Moore rejection sampler (Sainudiin in Machine interval experiments, Cornell University, Ithaca, 2005; Sainudiin and York in Algorithms Mol Biol 4(1):1, 2009) to which we provide a comparison.  相似文献   

14.
In this paper we will continue the analysis undertaken in Bagarello et al. (Rend Circ Mat Palermo (2) 55:21–28, 2006), Bongiorno et al. (Rocky Mt J Math 40(6):1745–1777, 2010), Triolo (Rend Circ Mat Palermo (2) 60(3):409–416, 2011) on the general problem of extending the noncommutative integration in a *-algebra of measurable operators. As in Aiena et al. (Filomat 28(2):263–273, 2014), Bagarello (Stud Math 172(3):289–305, 2006) and Bagarello et al. (Rend Circ Mat Palermo (2) 55:21–28, 2006), the main problem is to represent different types of partial *-algebras into a *-algebra of measurable operators in Segal’s sense, provided that these partial *-algebras posses a sufficient family of positive linear functionals (states) (Fragoulopoulou et al., J Math Anal Appl 388(2):1180–1193, 2012; Trapani and Triolo, Stud Math 184(2):133–148, 2008; Trapani and Triolo, Rend Circolo Mat Palermo 59:295–302, 2010; La Russa and Triolo, J Oper Theory, 69:2, 2013; Triolo, J Pure Appl Math, 43(6):601–617, 2012). In this paper, a new condition is given in an attempt to provide a extension of the non commutative integration.  相似文献   

15.
In this paper, we determine numerically a large class of equilibrium configurations of an elastic two-dimensional continuous pantographic sheet in three-dimensional deformation consisting of two families of fibers which are parabolic prior to deformation. The fibers are assumed (1) to be continuously distributed over the sample, (2) to be endowed of bending and torsional stiffnesses, and (3) tied together at their points of intersection to avoid relative slipping by means of internal (elastic) pivots. This last condition characterizes the system as a pantographic lattice (Alibert and Della Corte in Zeitschrift für angewandte Mathematik und Physik 66(5):2855–2870, 2015; Alibert et al. in Math Mech Solids 8(1):51–73, 2003; dell’Isola et al. in Int J Non-Linear Mech 80:200–208, 2016; Int J Solids Struct 81:1–12, 2016). The model that we employ here, developed by Steigmann and dell’Isola (Acta Mech Sin 31(3):373–382, 2015) and first investigated in Giorgio et al. (Comptes rendus Mecanique 2016, doi:10.1016/j.crme.2016.02.009), is applicable to fiber lattices in which three-dimensional bending, twisting, and stretching are significant as well as a resistance to shear distortion, i.e., to the angle change between the fibers. Some relevant numerical examples are exhibited in order to highlight the main features of the model adopted: In particular, buckling and post-buckling behaviors of pantographic parabolic lattices are investigated. The fabric of the metamaterial presented in this paper has been conceived to resist more effectively in the extensional bias tests by storing more elastic bending energy and less energy in the deformation of elastic pivots: A comparison with a fabric constituted by beams which are straight in the reference configuration shows that the proposed concept is promising.  相似文献   

16.
In Andreani et al. (Numer. Algorithms 57:457–485, 2011), an interior point method for the horizontal nonlinear complementarity problem was introduced. This method was based on inexact Newton directions and safeguarding projected gradient iterations. Global convergence, in the sense that every cluster point is stationary, was proved in Andreani et al. (Numer. Algorithms 57:457–485, 2011). In Andreani et al. (Eur. J. Oper. Res. 249:41–54, 2016), local fast convergence was proved for the underdetermined problem in the case that the Newtonian directions are computed exactly. In the present paper, it will be proved that the method introduced in Andreani et al. (Numer. Algorithms 57:457–485, 2011) enjoys fast (linear, superlinear, or quadratic) convergence in the case of truly inexact Newton computations. Some numerical experiments will illustrate the accuracy of the convergence theory.  相似文献   

17.
Let \({\alpha}\) be a bounded linear operator in a Banach space \({\mathbb{X}}\), and let A be a closed operator in this space. Suppose that for \({\Phi_1, \Phi_2}\) mapping D(A) to another Banach space \({\mathbb{Y}}\), \({A_{|{\rm ker}\, \Phi_1}}\) and \({A_{|{\rm ker}\, \Phi_2}}\) are generators of strongly continuous semigroups in \({\mathbb{X}}\). Assume finally that \({A_{|{\rm ker}\, \Phi_\text{a}}}\), where \({\Phi_\text{a} = \Phi_1 \alpha + \Phi_2 \beta}\) and \({\beta = I_\mathbb{X} - \alpha}\), is a generator also. In the case where \({\mathbb{X}}\) is an L 1-type space, and \({\alpha}\) is an operator of multiplication by a function \({0 \le \alpha \le 1}\), it is tempting to think of the later semigroup as describing dynamics which, while at state x, is subject to the rules of \({A_{|{\rm ker}\, \Phi_1}}\) with probability \({\alpha (x)}\) and is subject to the rules of \({A_{|{\rm ker}\, \Phi_2}}\) with probability \({\beta (x)= 1 - \alpha (x)}\). We provide an approximation (a singular perturbation) of the semigroup generated by \({A_{|{\rm ker}\, \Phi_\text{a}}}\) by semigroups built from those generated by \({A_{|{\rm ker}\, \Phi_1}}\) and \({A_{|{\rm ker}\, \Phi_2}}\) that supports this intuition. This result is motivated by a model of dynamics of Solea solea (Arino et al. in SIAM J Appl Math 60(2):408–436, 1999–2000; Banasiak and Goswami in Discrete Continuous Dyn Syst Ser A 35(2):617–635, 2015; Banasiak et al. in J Evol Equ 11:121–154, 2011, Mediterr J Math 11(2):533–559, 2014; Banasiak and Lachowicz in Methods of small parameter in mathematical biology, Birkhäuser, 2014; Sanchez et al. in J Math Anal Appl 323:680–699, 2006) and is, in a sense, dual to those of Bobrowski (J Evol Equ 7(3):555–565, 2007), Bobrowski and Bogucki (Stud Math 189:287–300, 2008), where semigroups generated by convex combinations of Feller’s generators were studied.  相似文献   

18.
In the present paper, using the concept of measure of non-compactness, we introduce the concept of a new contraction on a Banach space and obtain few generalizations of Darbo’s fixed-point theorem and extend some recent results of (Aghajani et al., J. Comput. Appl. Math. 260:68–77, 2014) and (Aghajani et al., Bull. Belg. Math. Soc. Simon Stevin 20:345–358, 2013). Also we show the applicability of obtained results to the theory of integral equations. A concrete example illustrating the mentioned applicability is also included.  相似文献   

19.
The goal of this paper is to point out that the results obtained in the recent papers (Chen and Song in Nonlinear Anal 72:1895–1901, 2010; Chu in J Math Anal Appl 327:1041–1045, 2007; Chu et al. in Nonlinear Anal 59:1001–1011, 2004a, J. Math Anal Appl 289:666–672, 2004b) can be seriously strengthened in the sense that we can significantly relax the assumptions of the main results so that we still get the same conclusions. In order to do this first, we prove that for \(n \ge 3\) any transformation which preserves the n-norm of any n vectors is automatically plus-minus linear. This will give a re-proof of the well-known Mazur–Ulam-type result that every n-isometry is automatically affine (\(n \ge 2\)) which was proven in several papers, e.g. in Chu et al. (Nonlinear Anal 70:1068–1074, 2009). Second, following the work of Rassias and ?emrl (Proc Am Math Soc 118:919–925, 1993), we provide the solution of a natural Aleksandrov-type problem in n-normed spaces, namely, we show that every surjective transformation which preserves the unit n-distance in both directions (\(n\ge 2\)) is automatically an n-isometry.  相似文献   

20.
Let T f be a Toeplitz operator on the Segal–Bargmann space or the standard weighted Bergman space over a bounded symmetric domain \({\Omega \subset {\bf C}^n}\) with possibly unbounded symbol f. Combining recent results in Bauer et al. (J. Funct. Anal. 259:57–78, 2010), Bauer et al. (J. reine angew. Math. doi: 10.1515/crelle-2015-0016), Issa (Integr. Equ. Oper. Theory 70:569–582, 2011) we show that in the case of uniformly continuous symbols f with respect to the Euclidean metric on C n and the Bergman metric on \({\Omega}\), respectively, the operator T f is bounded if and only if f is bounded. Moreover, T f is compact if and only if f vanishes at the boundary of \({\Omega.}\) This observation substantially extends a result in Coburn (Indiana Univ. Math. J. 23:433–439, 1973).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号