首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Let \({G}\) be a non-abelian finite \({p}\)-group of order \({p^n}\) with \({|G'| = p^k}\). Let \({M(G)}\) denote the Schur multiplier of \({G}\). Niroomand proved that \({|M(G)| \leq p^{\frac{1}{2}(n-k-1)(n+k-2)+1}}\). In this article we classify \({p}\)-groups \({G}\) of nilpotency class 2 for which \({|M(G)|}\) attains this bound.  相似文献   

2.
Let \({T}\) be a homomorphism from a Banach algebra \({B}\) to a Banach algebra \({A}\). The Cartesian product space \({A\times B}\) with \({T}\)-Lau multiplication and \({\ell^1}\)-norm becomes a new Banach algebra \({A\times _T B}\). We investigate the notions such as approximate amenability, pseudo amenability, \({\phi}\)-pseudo amenability, \({\phi}\)-biflatness and \({\phi}\)-biprojectivity for Banach algebra \({A\times_T B}\). We also present an example to show that approximate amenability of \({A}\) and \({B}\) is not stable for \({A\times _TB}\). Finally we characterize the double centralizer algebra of \({A\times _T B}\) and present an application of this characterization.  相似文献   

3.
Let \({L(n)}\) be the language of group theory with n additional new constant symbols \({c_1,\ldots,c_n}\). In \({L(n)}\) we consider the class \({{\mathbb{K}}(n)}\) of all finite groups G of exponent \({p > 2}\), where \({G'\subseteq\langle c_1^G,\ldots,c_n^G\rangle \subseteq Z(G)}\) and \({c_1^G,\ldots,c_n^G}\) are linearly independent. Using amalgamation we show the existence of Fraïssé limits \({D(n)}\) of \({{\mathbb{K}}(n)}\). \({D(1)}\) is Felgner’s extra special p-group. The elementary theories of the \({D(n)}\) are supersimple of SU-rank 1. They have the independence property.  相似文献   

4.
In this paper, we study the reducing subspaces for the multiplication operator by a finite Blaschke product \({\phi}\) on the Dirichlet space D. We prove that any two distinct nontrivial minimal reducing subspaces of \({M_\phi}\) are orthogonal. When the order n of \({\phi}\) is 2 or 3, we show that \({M_\phi}\) is reducible on D if and only if \({\phi}\) is equivalent to \({z^n}\). When the order of \({\phi}\) is 4, we determine the reducing subspaces for \({M_\phi}\), and we see that in this case \({M_\phi}\) can be reducible on D when \({\phi}\) is not equivalent to \({z^4}\). The same phenomenon happens when the order n of \({\phi}\) is not a prime number. Furthermore, we show that \({M_\phi}\) is unitarily equivalent to \({M_{z^n} (n > 1)}\) on D if and only if \({\phi = az^n}\) for some unimodular constant a.  相似文献   

5.
If every k-membered subfamily of a family of plane convex bodies has a line transversal, then we say that this family has property T(k). We say that a family \({\mathcal{F}}\) has property \({T-m}\), if there exists a subfamily \({\mathcal{G} \subset \mathcal{F}}\) with \({|\mathcal{F} - \mathcal{G}| \le m}\) admitting a line transversal. Heppes [7] posed the problem whether there exists a convex body K in the plane such that if \({\mathcal{F}}\) is a finite T(3)-family of disjoint translates of K, then m = 3 is the smallest value for which \({\mathcal{F}}\) has property \({T-m}\). In this paper, we study this open problem in terms of finite T(3)-families of pairwise disjoint translates of a regular 2n-gon \({(n \ge 5)}\). We find out that, for \({5 \le n \le 34}\), the family has property \({T - 3}\) ; for \({n \ge 35}\), the family has property \({T - 2}\).  相似文献   

6.
Let \({C^*_r(\mathbb{F}_{\infty})}\) be the reduced C*-algebra of the free group on infinitely many generators. Say that \({a, b \in C^*_r(\mathbb{F}_{\infty})_{SA}}\). Then \({a}\) is majorized by \({b}\) if and only if \({a \in \overline{Conv(U(b))}.}\) In particular, \({\tau(b)1 \in \overline{Conv(U(b))}.}\) Moreover, in the above results, we provide uniform bounds for the number of unitary conjugates needed for a given approximation. In the above, \({Conv(U(b))}\) is the convex hull of the unitary orbit of \({b}\) in \({C^*_r(\mathbb{F}_{\infty})}\).  相似文献   

7.
In the top to random shuffle, the first \({a}\) cards are removed from a deck of \({n}\) cards \({12 \cdots n}\) and then inserted back into the deck. This action can be studied by treating the top to random shuffle as an element \({B_a}\), which we define formally in Section 2, of the algebra \({{\mathbb{Q}[S_n]}}\). For \({a = 1}\), Garsia in “On the powers of top to random shuffling” (2002) derived an expansion formula for \({{B^k_1}}\) for \({{k \leq n}}\), though his proof for the formula was non-bijective. We prove, bijectively, an expansion formula for the arbitrary finite product \({B_{a1} B_{a2} \cdots B_{ak}}\) where \({a_{1}, \cdots , a_{k}}\) are positive integers, from which an improved version of Garsia’s aforementioned formula follows. We show some applications of this formula for \({B_{a1} B_{a2} \cdots B_{ak}}\), which include enumeration and calculating probabilities. Then for an arbitrary group \({G}\) we define the group of \({G}\)-permutations \({{S^G_n} := {G \wr S_n}}\) and further generalize the aforementioned expansion formula to the algebra \({{\mathbb{Q} [ S^G_n ]}}\) for the case of finite \({G}\), and we show how other similar expansion formulae in \({{\mathbb{Q} [S_n]}}\) can be generalized to \({{\mathbb{Q} [S^G_n]}}\).  相似文献   

8.
Let \({\Sigma_r}\) be the symmetric group acting on \({r}\) letters, \({K}\) be a field of characteristic 2, and \({\lambda}\) and \({\mu}\) be partitions of \({r}\) in at most two parts. Denote the permutation module corresponding to the Young subgroup \({\Sigma_\lambda}\), in \({\Sigma_r}\), by \({M^\lambda}\), and the indecomposable Young module by \({Y^\mu}\). We give an explicit presentation of the endomorphism algebra \({{\rm End}_{k[\Sigma_r]}(Y^\mu)}\) using the idempotents found by Doty et al. (J Algebra 307(1):377–396, 2007).  相似文献   

9.
We show that for every \({k\ge 2}\) and \({n\ge k}\), there is an \({n}\)-dimensional unit cube in \({\mathbb{R}^n}\) which is mapped to a regular \({2k}\)-gon by an orthogonal projection in \({\mathbb{R}^n}\) onto a \({2}\)-dimensional subspace. Moreover, by increasing dimension \({n}\), arbitrary large regular \({2k}\)-gon can be obtained in such a way. On the other hand, for every \({m\ge 3}\) and \({n\ge m-1}\), there is an \({n}\)-dimensional regular simplex of unit edge in \({\mathbb{R}^n}\) which is mapped to a regular \({m}\)-gon by an orthogonal projection onto a plane. Moreover, contrary to the cube case, arbitrary small regular \({m}\)-gon can be obtained in such a way, by increasing dimension \({n}\).  相似文献   

10.
For each rank metric code \(\mathcal {C}\subseteq \mathbb {K}^{m\times n}\), we associate a translation structure, the kernel of which is shown to be invariant with respect to the equivalence on rank metric codes. When \(\mathcal {C}\) is \(\mathbb {K}\)-linear, we also propose and investigate other two invariants called its middle nucleus and right nucleus. When \(\mathbb {K}\) is a finite field \(\mathbb {F}_q\) and \(\mathcal {C}\) is a maximum rank distance code with minimum distance \(d<\min \{m,n\}\) or \(\gcd (m,n)=1\), the kernel of the associated translation structure is proved to be \(\mathbb {F}_q\). Furthermore, we also show that the middle nucleus of a linear maximum rank distance code over \(\mathbb {F}_q\) must be a finite field; its right nucleus also has to be a finite field under the condition \(\max \{d,m-d+2\} \geqslant \left\lfloor \frac{n}{2} \right\rfloor +1\). Let \(\mathcal {D}\) be the DHO-set associated with a bilinear dimensional dual hyperoval over \(\mathbb {F}_2\). The set \(\mathcal {D}\) gives rise to a linear rank metric code, and we show that its kernel and right nucleus are isomorphic to \(\mathbb {F}_2\). Also, its middle nucleus must be a finite field containing \(\mathbb {F}_q\). Moreover, we also consider the kernel and the nuclei of \(\mathcal {D}^k\) where k is a Knuth operation.  相似文献   

11.
We prove a Beurling-Blecher-Labuschagne theorem for \({H^\infty}\)-invariant spaces of \({L^p(\mathcal{M},\tau)}\) when \({0 < p \leq\infty}\), using Arveson’s non-commutative Hardy space \({H^\infty}\) in relation to a von Neumann algebra \({\mathcal{M}}\) with a semifinite, faithful, normal tracial weight \({\tau}\). Using the main result, we are able to completely characterize all \({H^\infty}\)-invariant subspaces of \({L^p(\mathcal{M} \rtimes_\alpha \mathbb{Z},\tau)}\), where \({\mathcal{M} \rtimes_\alpha \mathbb{Z} }\) is a crossed product of a semifinite von Neumann algebra \({\mathcal{M}}\) by the integer group \({\mathbb{Z}}\), and \({H^\infty}\) is a non-selfadjoint crossed product of \({\mathcal{M}}\) by \({\mathbb{Z}^+}\). As an example, we characterize all \({H^\infty}\)-invariant subspaces of the Schatten p-class \({S^p(\mathcal{H})}\), where \({H^\infty}\) is the lower triangular subalgebra of \({B(\mathcal{H})}\), for each \({0 < p \leq\infty}\).  相似文献   

12.
Let F be a global function field of characteristic \({p > 0}\), \({K/F}\) an \({\ell}\)-adic Lie extension (\({ \ell \neq p}\)), and \({A/F}\) an abelian variety. We provide Euler characteristic formulas for the Gal\({(K/F)}\)-module \({Sel_A(K)_\ell}\).  相似文献   

13.
We consider a broad class of linear Perron–Frobenius operators \({\Lambda:X \rightarrow X}\), where \({X}\) is a real Banach space of \({C^m}\) functions. We prove the existence of a strictly positive \({C^m}\) eigenvector \({v}\) with eigenvalue \({r=r(\Lambda) =}\) the spectral radius of \({\Lambda}\). We prove (see Theorem 6.5 in Sect. 6 of this paper) that \({r(\Lambda)}\) is an algebraically simple eigenvalue and that, if \({\sigma(\Lambda)}\) denotes the spectrum of the complexification of \({\Lambda,\sigma(\Lambda) \backslash \{r(\Lambda)\}\subseteq \{\zeta \in \mathbb{C} \big| |\zeta| \le r_*\}}\), where \({r_* < r(\Lambda)}\). Furthermore, if \({u \in X}\) is any strictly positive function, \({(\frac 1r \Lambda)^k(u) \rightarrow s_u v}\) as \({k \rightarrow \infty}\), where \({s_u > 0}\) and convergence is in the norm topology on \({X}\). In applications to the computation of Hausdorff dimension, one is given a parametrized family \({\Lambda_s,s > s_*}\), of such operators and one wants to determine the (unique) value \({s_0}\) such that \({r(\Lambda_{s_0})=1}\). In another paper (Falk and Nussbaum in C\({^{\rm m}}\) Eigenfunctions of Perron–Frobenius operators and a new approach to numerical computation of Hausdorff dimension, submitted) we prove that explicit estimates on the partial derivatives of the positive eigenvector \({v_s}\) of \({\Lambda_s}\) can be obtained and that this information can be used to give rigorous, sharp upper and lower bounds for \({s_0}\).  相似文献   

14.
Let \({H}\) be a complex Hilbert space of dimension greater than \({3}\). We show that every surjective 2-local \({*}\)-Lie isomorphism \({\Phi}\) of \({B(H)}\) has the form \({\Phi=\Psi+\tau}\), where \({\Psi}\) is a \({*}\)-isomorphism or the negative of a \({*}\)-anti-isomorphism of \({B(H)}\), and \({\tau}\) is a homogeneous map from \({B(H)}\) into \({\mathbb{C}I}\) vanishing on every sum of commutators.  相似文献   

15.
In this paper, we continue the study of semitotal domination in graphs in [Discrete Math. 324, 13–18 (2014)]. A set \({S}\) of vertices in \({G}\) is a semitotal dominating set of \({G}\) if it is a dominating set of \({G}\) and every vertex in \({S}\) is within distance 2 of another vertex of \({S}\). The semitotal domination number, \({{\gamma_{t2}}(G)}\), is the minimum cardinality of a semitotal dominating set of \({G}\). This domination parameter is squeezed between arguably the two most important domination parameters; namely, the domination number, \({\gamma (G)}\), and the total domination number, \({{\gamma_{t}}(G)}\). We observe that \({\gamma (G) \leq {\gamma_{t2}}(G) \leq {\gamma_{t}}(G)}\). A claw-free graph is a graph that does not contain \({K_{1, \, 3}}\) as an induced subgraph. We prove that if \({G}\) is a connected, claw-free, cubic graph of order \({n \geq 10}\), then \({{\gamma_{t2}}(G) \leq 4n/11}\).  相似文献   

16.
Call a set \({A \subseteq \mathbb {R}}\)paradoxical if there are disjoint \({A_0, A_1 \subseteq A}\) such that both \({A_0}\) and \({A_1}\) are equidecomposable with \({A}\) via countabbly many translations. \({X \subseteq \mathbb {R}}\) is hereditarily nonparadoxical if no uncountable subset of \({X}\) is paradoxical. Penconek raised the question if every hereditarily nonparadoxical set \({X \subseteq \mathbb {R}}\) is the union of countably many sets, each omitting nontrivial solutions of \({x - y = z - t}\). Nowik showed that the answer is ‘yes’, as long as \({|X| \leq \aleph_\omega}\). Here we show that consistently there exists a counterexample of cardinality \({\aleph_{\omega+1}}\) and it is also consistent that the continuum is arbitrarily large and Penconek’s statement holds for any \({X}\).  相似文献   

17.
We fix an integer \({n \geq 1}\) and a divisor m of n such that n/m is odd. Let p be a prime number of the form \({p=2n\ell+1}\) for some odd prime number \({\ell}\) with \({\ell \nmid m}\). Let \({S=pB_{1,2m\ell}}\) be the p times of the generalised Bernoulli number associated to an odd Dirichlet character of conductor p and order \({2m\ell}\), which is an algebraic integer of the \({2m\ell}\)th cyclotomic field. It is known that \({S \neq 0}\). More strongly, we show that when \({\ell}\) is sufficiently large, the trace of \({\zeta^{-1}S}\) to the \({2m}\)th cyclotomic field does not vanish for any\({\ell}\)th root \({\zeta}\) of unity. We also show a related result on indivisibility of relative class numbers.  相似文献   

18.
It is well known that if \({0.a_1a_2a_3\ldots}\) is the base-\({b}\) expansion of a number normal to base-\({b}\), then the numbers \({0.a_ka_{m+k}a_{2m+k}\ldots}\) for \({m\ge 2}\), \({k\ge 1}\) are all normal to base-\({b}\) as well. In contrast, given a continued fraction expansion \({\langle a_1,a_2,a_3,\ldots\rangle}\) that is normal (now with respect to the continued fraction expansion), we show that for any integers \({m\ge 2}\), \({k\ge 1}\), the continued fraction \({\langle a_k, a_{m+k},a_{2m+k},a_{3m+k},\ldots\rangle}\) will never be normal.  相似文献   

19.
We show that if \({f\colon X\to Y}\) is a quasisymmetric mapping between Ahlfors regular spaces, then \({dim_H f(E)\leq dim_H E}\) for “almost every” bounded Ahlfors regular set \({E\subseteq X}\). If additionally, \({X}\) and \({Y}\) are Loewner spaces then \({dim_H f(E)=dim_H E}\) for “almost every" Ahlfors regular set \({E\subset X}\). The precise statements of these results are given in terms of Fuglede’s modulus of measures. As a corollary of these general theorems we show that if \({f}\) is a quasiconformal map of \({\mathbb{R}^N}\), \({N\geq 2}\), then for Lebesgue a.e. \({y\in\mathbb{R}^N}\) we have \({dim_H f(y+E) = dim_H E}\). A similar result holds for Carnot groups as well. For planar quasiconformal maps, our general estimates imply that if \({E \subset {\mathbb{R}}}\) is Ahlfors \({d}\)-regular, \({d < 1}\), then some component of \({f(E \times {\mathbb{R}})}\) has dimension at most \({2/(d+1)}\), and we construct examples to show this bound is sharp. In addition, we show there is a \({1}\)-dimensional set \({S\subseteq \mathbb R}\) and planar quasiconformal map \({f}\) such that \({f({\mathbb{R}} \times S)}\) contains no rectifiable sub-arcs. These results generalize work of Balogh et al. (J Math Pures Appl (2)99:125–149, 2013) and answer questions posed in Balogh et al. (J Math Pures Appl (2)99:125–149, 2013) and Capogna et al. (Mapping theory in metric spaces. http://aimpl.org/mappingmetric, 2016).  相似文献   

20.
For a fairly general reductive group \({G_{/\mathbb{Q}_p}}\), we explicitly compute the space of locally algebraic vectors in the Breuil–Herzig construction \({\Pi(\rho)^{ord}}\), for a potentially semistable Borel-valued representation \({\rho}\) of \({Gal(\bar{\mathbb{Q}}_p/\mathbb{Q}_p)}\). The point being we deal with the whole representation, not just its socle—and we go beyond \({GL_n(\mathbb{Q}_p)}\). In the case of \({GL_2(\mathbb{Q}_p)}\), this relation is one of the key properties of the \({p}\)-adic local Langlands correspondence. We give an application to \({p}\)-adic local-global compatibility for \({\Pi(\rho)^{ord}}\) for modular representations, but with no indecomposability assumptions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号