首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A second‐order finite difference/pseudospectral scheme is proposed for numerical approximation of multi‐term time fractional diffusion‐wave equation with Neumann boundary conditions. The scheme is based upon the weighted and shifted Grünwald difference operators approximation of the time fractional calculus and Gauss‐Lobatto‐Legendre‐Birkhoff (GLLB) pseudospectral method for spatial discretization. The unconditionally stability and convergence of the scheme are rigorously proved. Numerical examples are carried out to verify theoretical results.  相似文献   

2.
This paper reports a spectral tau method for numerically solving multi-point boundary value problems (BVPs) of linear high-order ordinary differential equations. The construction of the shifted Jacobi tau approximation is based on conventional differentiation. This use of differentiation allows the imposition of the governing equation at the whole set of grid points and the straight forward implementation of multiple boundary conditions. Extension of the tau method for high-order multi-point BVPs with variable coefficients is treated using the shifted Jacobi Gauss–Lobatto quadrature. Shifted Jacobi collocation method is developed for solving nonlinear high-order multi-point BVPs. The performance of the proposed methods is investigated by considering several examples. Accurate results and high convergence rates are achieved.  相似文献   

3.
In this article, we develop a direct solution technique for solving multi-order fractional differential equations (FDEs) with variable coefficients using a quadrature shifted Legendre tau (Q-SLT) method. The spatial approximation is based on shifted Legendre polynomials. A new formula expressing explicitly any fractional-order derivatives of shifted Legendre polynomials of any degree in terms of shifted Legendre polynomials themselves is proved. Extension of the tau method for FDEs with variable coefficients is treated using the shifted Legendre–Gauss–Lobatto quadrature. Numerical results are given to confirm the reliability of the proposed method for some FDEs with variable coefficients.  相似文献   

4.
The pseudo‐spectral Legendre–Galerkin method (PS‐LGM) is applied to solve a nonlinear partial integro‐differential equation arising in population dynamics. This equation is a competition model in which similar individuals are competing for the same resources. It is a kind of reaction–diffusion equation with integral term corresponding to nonlocal consumption of resources. The proposed method is based on the Legendre–Galerkin formulation for the linear terms and interpolation operator at the Chebyshev–Gauss–Lobatto (CGL) points for the nonlinear terms. Also, the integral term, which is a kind of convolution, is directly computed by a fast and accurate method based on CGL interpolation operator, and thus, the use of any quadrature formula in its computation is avoided. The main difference of the PS‐LGM presented in the current paper with the classic LGM is in treating the nonlinear terms and imposing boundary conditions. Indeed, in the PS‐LGM, the nonlinear terms are efficiently handled using the CGL points, and also the boundary conditions are imposed strongly as collocation methods. Combination of the PS‐LGM with a semi‐implicit time integration method such as second‐order backward differentiation formula and Adams‐Bashforth method leads to reducing the complexity of computations and obtaining a linear algebraic system of equations with banded coefficient matrix. The desired equation is considered on one and two‐dimensional spatial domains. Efficiency, accuracy, and convergence of the proposed method are demonstrated numerically in both cases. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
In this article, our main goal is to render an idea to convert a nonlinear weakly singular Volterra integral equation to a non‐singular one by new fractional‐order Legendre functions. The fractional‐order Legendre functions are generated by change of variable on well‐known shifted Legendre polynomials. We consider a general form of singular Volterra integral equation of the second kind. Then the fractional Legendre–Gauss–Lobatto quadratures formula eliminates the singularity of the kernel of the integral equation. Finally, the Legendre pseudospectral method reduces the solution of this problem to the solution of a system of algebraic equations. This method also can be utilized on fractional differential equations as well. The comparison of results of the presented method and other numerical solutions shows the efficiency and accuracy of this method. Also, the obtained maximum error between the results and exact solutions shows that using the present method leads to accurate results and fast convergence for solving nonlinear weakly singular Volterra integral equations. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
The operational matrices of left Caputo fractional derivative, right Caputo fractional derivative, and Riemann–Liouville fractional integral, for shifted Chebyshev polynomials, are presented and derived. We propose an accurate and efficient spectral algorithm for the numerical solution of the two-sided space–time Caputo fractional-order telegraph equation with three types of non-homogeneous boundary conditions, namely, Dirichlet, Robin, and non-local conditions. The proposed algorithm is based on shifted Chebyshev tau technique combined with the derived shifted Chebyshev operational matrices. We focus primarily on implementing the novel algorithm both in temporal and spatial discretizations. This algorithm reduces the problem to a system of algebraic equations greatly simplifying the problem. This system can be solved by any standard iteration method. For confirming the efficiency and accuracy of the proposed scheme, we introduce some numerical examples with their approximate solutions and compare our results with those achieved using other methods.  相似文献   

7.
In this article, we propose an implicit pseudospectral scheme for nonlinear time fractional reaction–diffusion equations with Neumann boundary conditions, which is based upon Gauss–Lobatto–Legendre–Birkhoff pseudospectral method in space and finite difference method in time. A priori estimate of numerical solution is given firstly. Then the existence of numerical solution is proved by Brouwer fixed point theorem and the uniqueness is obtained. It is proved rigorously that the fully discrete scheme is unconditionally stable and convergent. Furthermore, we develop a modified scheme by adding correction terms for the problem with nonsmooth solutions. Numerical examples are given to verify the theoretical analysis.  相似文献   

8.
This article is devoted to solving numerically the nonlinear generalized Benjamin–Bona–Mahony–Burgers (GBBMB) equation that has several applications in physics and applied sciences. First, the time derivative is approximated by using a finite difference formula. Afterward, the stability and convergence analyses of the obtained time semi‐discrete are proven by applying the energy method. Also, it has been demonstrated that the convergence order in the temporal direction is O(dt) . Second, a fully discrete formula is acquired by approximating the spatial derivatives via Legendre spectral element method. This method uses Lagrange polynomial based on Gauss–Legendre–Lobatto points. An error estimation is also given in detail for full discretization scheme. Ultimately, the GBBMB equation in the one‐ and two‐dimension is solved by using the proposed method. Also, the calculated solutions are compared with theoretical solutions and results obtained from other techniques in the literature. The accuracy and efficiency of the mentioned procedure are revealed by numerical samples.  相似文献   

9.
In the paper, we apply the generalized polynomial chaos expansion and spectral methods to the Burgers equation with a random perturbation on its left boundary condition. Firstly, the stochastic Galerkin method combined with the Legendre–Galerkin Chebyshev collocation scheme is adopted, which means that the original equation is transformed to the deterministic nonlinear equations by the stochastic Galerkin method and the Legendre–Galerkin Chebyshev collocation scheme is used to deal with the resulting nonlinear equations. Secondly, the stochastic Legendre–Galerkin Chebyshev collocation scheme is developed for solving the stochastic Burgers equation; that is, the stochastic Legendre–Galerkin method is used to discrete the random variable meanwhile the nonlinear term is interpolated through the Chebyshev–Gauss points. Then a set of deterministic linear equations can be obtained, which is in contrast to the other existing methods for the stochastic Burgers equation. The mean square convergence of the former method is analyzed. Numerical experiments are performed to show the effectiveness of our two methods. Both methods provide alternative approaches to deal with the stochastic differential equations with nonlinear terms.  相似文献   

10.
The space-time fractional diffusion-wave equation (FDWE) is a generalization of classical diffusion and wave equations which is used in modeling practical phenomena of diffusion and wave in fluid flow, oil strata and others. This paper reports an accurate spectral tau method for solving the two-sided space and time Caputo FDWE with various types of nonhomogeneous boundary conditions. The proposed method is based on shifted Legendre tau (SLT) procedure in conjunction with the shifted Legendre operational matrices of Riemann-Liouville fractional integral, left-sided and right-sided fractional derivatives. We focus primarily on implementing this algorithm in both temporal and spatial discretizations. In addition, convergence analysis is provided theoretically for the Dirichlet boundary conditions, along with graphical analysis for several special cases using other conditions. These suggest that the Legendre Tau method converges exponentially provided that the data in the given FDWE are smooth. Finally, several numerical examples are given to demonstrate the high accuracy of the proposed method.  相似文献   

11.
The Legendre Galerkin Chebyshev collocation least squares method is presented for a second‐order elliptic problem with variable coefficients. By introducing a flux variable, the original problem is rewritten as an equivalent first‐order system. The present method is based on the Legendre Galerkin method, but Chebyshev–Gauss–Lobatto collocation is used to deal with the variable coefficient and the right hand side terms. The coercivity and continuity of the method are proved and an error estimate in the ‐norm is derived. Some numerical examples are given to validate the efficiency and accuracy of the scheme. © 2016Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 1689–1703, 2016  相似文献   

12.
In order to maintain spectrally accurate solutions, the grids on which a non-linear physical problem is to be solved must also be obtained by spectrally accurate techniques. The purpose of this paper is to describe a pseudospectral computational method of solving integro-differential systems with quadratic performance index. The proposed method is based on the idea of relating grid points to the structure of orthogonal interpolating polynomials. The optimal control and the trajectory are approximated by the m th degree interpolating polynomial. This interpolating polynomial is spectrally constructed using Legendre–Gauss–Lobatto grid points as the collocation points, and Lagrange polynomials as trial functions. The integrals involved in the formulation of the problem are calculated by Gauss–Lobatto integration rule, thereby reducing the problem to a mathematical programming one to which existing well-developed algorithms may be applied. The method is easy to implement and yields very accurate results. An illustrative example is included to confirm the convergence of the pseudospectral Legendre method, and a comparison is made with an existing result in the literature. © 1998 B. G. Teubner Stuttgart–John Wiley & Sons Ltd.  相似文献   

13.
In this paper, a shifted Jacobi–Gauss collocation spectral algorithm is developed for solving numerically systems of high‐order linear retarded and advanced differential–difference equations with variable coefficients subject to mixed initial conditions. The spatial collocation approximation is based upon the use of shifted Jacobi–Gauss interpolation nodes as collocation nodes. The system of differential–difference equations is reduced to a system of algebraic equations in the unknown expansion coefficients of the sought‐for spectral approximations. The convergence is discussed graphically. The proposed method has an exponential convergence rate. The validity and effectiveness of the method are demonstrated by solving several numerical examples. Numerical examples are presented in the form of tables and graphs to make comparisons with the results obtained by other methods and with the exact solutions more easier. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
A coupled boundary spectral element method (BSEM) and spectral element method (SEM) formulation for the propagation of small-amplitude water waves over variable bathymetries is presented in this work. The wave model is based on the mild-slope equation (MSE), which provides a good approximation of the propagation of water waves over irregular bottom surfaces with slopes up to 1:3. In unbounded domains or infinite regions, space can be divided into two different areas: a central region of interest, where an irregular bathymetry is included, and an exterior infinite region with straight and parallel bathymetric lines. The SEM allows us to model the central region, where any variation of the bathymetry can be considered, while the exterior infinite region is modelled by the BSEM which, combined with the fundamental solution presented by Cerrato et al. [A. Cerrato, J. A. González, L. Rodríguez-Tembleque, Boundary element formulation of the mild-slope equation for harmonic water waves propagating over unidirectional variable bathymetries, Eng. Anal. Boundary Elem. 62 (2016) 22–34.] can include bathymetries with straight and parallel contour lines. This coupled model combines important advantages of both methods; it benefits from the flexibility of the SEM for the interior region and, at the same time, includes the fulfilment of the Sommerfeld’s radiation condition for the exterior problem, that is provided by the BSEM. The solution approximation inside the elements is constructed by high order Legendre polynomials associated with Legendre–Gauss–Lobatto quadrature points, providing a spectral convergence for both methods. The proposed formulation has been validated in three different benchmark cases with different shapes of the bottom surface. The solutions exhibit the typical p-convergence of spectral methods.  相似文献   

15.
In 2010 Menon and Srinivasan published a conjecture for the statistical structure of solutions \(\rho \) to scalar conservation laws with certain Markov initial conditions, proposing a kinetic equation that should suffice to describe \(\rho (x,t)\) as a stochastic process in x with t fixed. In this article we verify an analogue of the conjecture for initial conditions which are bounded, monotone, and piecewise constant. Our argument uses a particle system representation of \(\rho (x,t)\) over \(0 \le x \le L\) for \(L > 0\), with a suitable random boundary condition at \(x = L\).  相似文献   

16.
Nonlinear partial differential equation with random Neumann boundary conditions are considered. A stochastic Taylor expansion method is derived to simulate these stochastic systems numerically. As examples, a nonlinear parabolic equation (the real Ginzburg-Landau equation) and a nonlinear hyperbolic equation (the sine-Gordon equation) with random Neumann boundary conditions are solved numerically using a stochastic Taylor expansion method. The impact of boundary noise on the system evolution is also discussed.  相似文献   

17.
This paper deals with the quenching phenomenon for a non-local diffusion equation $$u_t(x,t)=\int\limits_\Omega{J(x-y)(u(y,t)-u(x,t))}{\rm d}y-f(u(x,t)),(x,t)\in\Omega\times[0,T),$$ with a general singular absorption term and Neumann boundary condition. The local existence and uniqueness of the solution are proved, and the solution of the equation quenches in finite time is shown. Moreover, under appropriate condition, the only quenching point is x?=?0, and the estimate of the quenching rate is obtained. Finally, some numerical experiments are performed, which illustrate our results.  相似文献   

18.
A method for the numerical evaluation of the integrals $$I_1 (\lambda ) = \int_{ - 1}^1 {f(x)\sin (\lambda x)dx} andI_2 (\lambda ) = \int_{ - 1}^1 {f(x)\cos (\lambda x)dx} $$ is presented. The functionf(x) is approximated by a partial sum of its Legendre series.  相似文献   

19.
We present a high‐order spectral element method (SEM) using modal (or hierarchical) basis for modeling of some nonlinear second‐order partial differential equations in two‐dimensional spatial space. The discretization is based on the conforming spectral element technique in space and the semi‐implicit or the explicit finite difference formula in time. Unlike the nodal SEM, which is based on the Lagrange polynomials associated with the Gauss–Lobatto–Legendre or Chebyshev quadrature nodes, the Lobatto polynomials are used in this paper as modal basis. Using modal bases due to their orthogonal properties enables us to exactly obtain the elemental matrices provided that the element‐wise mapping has the constant Jacobian. The difficulty of implementation of modal approximations for nonlinear problems is treated in this paper by expanding the nonlinear terms in the weak form of differential equations in terms of the Lobatto polynomials on each element using the fast Fourier transform (FFT). Utilization of the Fourier interpolation on equidistant points in the FFT algorithm and the enough polynomial order of approximation of the nonlinear terms can lead to minimize the aliasing error. Also, this approach leads to finding numerical solution of a nonlinear differential equation through solving a system of linear algebraic equations. Numerical results for some famous nonlinear equations illustrate efficiency, stability and convergence properties of the approximation scheme, which is exponential in space and up to third‐order in time. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
A Legendre–Gauss–Lobatto spectral collocation method is introduced for the numerical solutions of a class of nonlinear delay differential equations. An efficient algorithm is designed for the single‐step scheme and applied to the multiple‐domain case. As a theoretical result, we obtain a general convergence theorem for the single‐step case. Numerical results show that the suggested algorithm enjoys high‐order accuracy both in time and in the delayed argument and can be implemented in a robust and efficient manner. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号