首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to solve the model of short-term cascaded hydroelectric system scheduling, a novel chaotic particle swarm optimization (CPSO) algorithm using improved logistic map is introduced, which uses the water discharge as the decision variables combined with the death penalty function. According to the principle of maximum power generation, the proposed approach makes use of the ergodicity, symmetry and stochastic property of improved logistic chaotic map for enhancing the performance of particle swarm optimization (PSO) algorithm. The new hybrid method has been examined and tested on two test functions and a practical cascaded hydroelectric system. The experimental results show that the effectiveness and robustness of the proposed CPSO algorithm in comparison with other traditional algorithms.  相似文献   

2.
Improved particle swarm optimization combined with chaos   总被引:25,自引:0,他引:25  
As a novel optimization technique, chaos has gained much attention and some applications during the past decade. For a given energy or cost function, by following chaotic ergodic orbits, a chaotic dynamic system may eventually reach the global optimum or its good approximation with high probability. To enhance the performance of particle swarm optimization (PSO), which is an evolutionary computation technique through individual improvement plus population cooperation and competition, hybrid particle swarm optimization algorithm is proposed by incorporating chaos. Firstly, adaptive inertia weight factor (AIWF) is introduced in PSO to efficiently balance the exploration and exploitation abilities. Secondly, PSO with AIWF and chaos are hybridized to form a chaotic PSO (CPSO), which reasonably combines the population-based evolutionary searching ability of PSO and chaotic searching behavior. Simulation results and comparisons with the standard PSO and several meta-heuristics show that the CPSO can effectively enhance the searching efficiency and greatly improve the searching quality.  相似文献   

3.
《Applied Mathematical Modelling》2014,38(17-18):4480-4492
Reservoir flood control operation is a complex engineering optimization problem with a large number of constraints. In order to solve this problem, a chaotic particle swarm optimization (CPSO) algorithm based on the improved logistic map is presented, which uses the discharge flow process as the decision variables combined with the death penalty function. According to the principle of maximum eliminating flood peak, a novel flood control operation model has been established with the goal of minimum standard deviation of the discharge flow process. At the same time, a piecewise linear interpolation function (PLIF) is applied to deal with the constraints for solving objective function. The performance of the proposed model and method is evaluated on two typical floods of Three Gorges reservoir. In comparison with existing models and other algorithms, the proposed model and algorithm can generate better solutions with the minimal flood peak discharge and the maximal peak-clipping rate for reservoir flood control operation.  相似文献   

4.
This paper presents a fuzzy algorithm for controlling chaos in nonlinear systems via minimum entropy approach. The proposed fuzzy logic algorithm is used to minimize the Shannon entropy of a chaotic dynamics. The fuzzy laws are determined in such a way that the entropy function descends until the chaotic trajectory of the system is replaced by a regular one. The Logistic and the Henon maps as two discrete chaotic systems, and the Duffing equation as a continuous one are used to validate the proposed scheme and show the effectiveness of the control method in chaotic dynamical systems.  相似文献   

5.
A novel chaotic improved imperialist competitive algorithm (CICA) is presented for global optimization. The ICA is a new meta-heuristic optimization developed based on a socio-politically motivated strategy and contains two main steps: the movement of the colonies and the imperialistic competition. Here different chaotic maps are utilized to improve the movement step of the algorithm. Seven different chaotic maps are investigated and the Logistic and Sinusoidal maps are found as the best choices. Comparing the new algorithm with the other ICA-based methods demonstrates the superiority of the CICA for the benchmark functions.  相似文献   

6.
Chaotic bat algorithm   总被引:1,自引:0,他引:1  
Bat algorithm (BA) is a recent metaheuristic optimization algorithm proposed by Yang. In the present study, we have introduced chaos into BA so as to increase its global search mobility for robust global optimization. Detailed studies have been carried out on benchmark problems with different chaotic maps. Here, four different variants of chaotic BA are introduced and thirteen different chaotic maps are utilized for validating each of these four variants. The results show that some variants of chaotic BAs can clearly outperform the standard BA for these benchmarks.  相似文献   

7.
A secure pseudo-random number generator three-mixer is proposed. The principle of the method consists in mixing three chaotic maps produced from an input initial vector. The algorithm uses permutations whose positions are computed and indexed by a standard chaotic function and a linear congruence. The performance of that scheme is evaluated through statistical analysis. Such a cryptosystem lets appear significant cryptographic qualities for a high security level.  相似文献   

8.
In order to solve the problem that chaos is degenerated in limited computer precision and Cat map is the small key space, this paper presents a chaotic map based on topological conjugacy and the chaotic characteristics are proved by Devaney definition. In order to produce a large key space, a Cat map named block Cat map is also designed for permutation process based on multiple-dimensional chaotic maps. The image encryption algorithm is based on permutation–substitution, and each key is controlled by different chaotic maps. The entropy analysis, differential analysis, weak-keys analysis, statistical analysis, cipher random analysis, and cipher sensibility analysis depending on key and plaintext are introduced to test the security of the new image encryption scheme. Through the comparison to the proposed scheme with AES, DES and Logistic encryption methods, we come to the conclusion that the image encryption method solves the problem of low precision of one dimensional chaotic function and has higher speed and higher security.  相似文献   

9.
基于混沌粒子群算法的Tikhonov正则化参数选取   总被引:2,自引:0,他引:2  
余瑞艳 《数学研究》2011,44(1):101-106
Tikhonov正则化方法是求解不适定问题最为有效的方法之一,而正则化参数的最优选取是其关键.本文将混沌粒子群优化算法与Tikhonov正则化方法相结合,基于Morozov偏差原理设计粒子群的适应度函数,利用混沌粒子群优化算法的优点,为正则化参数的选取提供了一条有效的途径.数值实验结果表明,本文方法能有效地处理不适定问题,是一种实用有效的方法.  相似文献   

10.
Recently [Solak E, Çokal C, Yildiz OT Biyikogˇlu T. Cryptanalysis of Fridrich’s chaotic image encryption. Int J Bifur Chaos 2010;20:1405-1413] cryptanalyzed the chaotic image encryption algorithm of [Fridrich J. Symmetric ciphers based on two-dimensional chaotic maps. Int J Bifur Chaos 1998;8(6):1259-1284], which was considered a benchmark for measuring security of many image encryption algorithms. This attack can also be applied to other encryption algorithms that have a structure similar to Fridrich’s algorithm, such as that of [Chen G, Mao Y, Chui, C. A symmetric image encryption scheme based on 3D chaotic cat maps. Chaos Soliton Fract 2004;21:749-761]. In this paper, we suggest a novel image encryption algorithm based on a three dimensional (3D) chaotic map that can defeat the aforementioned attack among other existing attacks. The design of the proposed algorithm is simple and efficient, and based on three phases which provide the necessary properties for a secure image encryption algorithm including the confusion and diffusion properties. In phase I, the image pixels are shuffled according to a search rule based on the 3D chaotic map. In phases II and III, 3D chaotic maps are used to scramble shuffled pixels through mixing and masking rules, respectively. Simulation results show that the suggested algorithm satisfies the required performance tests such as high level security, large key space and acceptable encryption speed. These characteristics make it a suitable candidate for use in cryptographic applications.  相似文献   

11.
Recently, Pareek et al. [Phys. Lett. A 309 (2003) 75] have developed a symmetric key block cipher algorithm using a one-dimensional chaotic map. In this paper, we propose a symmetric key block cipher algorithm in which multiple one-dimensional chaotic maps are used instead of a one-dimensional chaotic map. However, we also use an external secret key of variable length (maximum 128-bits) as used by Pareek et al. In the present cryptosystem, plaintext is divided into groups of variable length (i.e. number of blocks in each group is different) and these are encrypted sequentially by using randomly chosen chaotic map from a set of chaotic maps. For block-by-block encryption of variable length group, number of iterations and initial condition for the chaotic maps depend on the randomly chosen session key and encryption of previous block of plaintext, respectively. The whole process of encryption/decryption is governed by two dynamic tables, which are updated time to time during the encryption/decryption process. Simulation results show that the proposed cryptosystem requires less time to encrypt the plaintext as compared to the existing chaotic cryptosystems and further produces the ciphertext having flat distribution of same size as the plaintext.  相似文献   

12.
A recently developed metaheuristic optimization algorithm, firefly algorithm (FA), mimics the social behavior of fireflies based on the flashing and attraction characteristics of fireflies. In the present study, we will introduce chaos into FA so as to increase its global search mobility for robust global optimization. Detailed studies are carried out on benchmark problems with different chaotic maps. Here, 12 different chaotic maps are utilized to tune the attractive movement of the fireflies in the algorithm. The results show that some chaotic FAs can clearly outperform the standard FA.  相似文献   

13.
An efficient algorithm for obtaining random bijective S-boxes based on chaotic maps and composition method is presented. The proposed method is based on compositions of S-boxes from a fixed starting set. The sequence of the indices of starting S-boxes used is obtained by using chaotic maps. The results of performance test show that the S-box presented in this paper has good cryptographic properties. The advantages of the proposed method are the low complexity and the possibility to achieve large key space.  相似文献   

14.
The effect of numerical precision on the mean distance and on the mean coalescence time between trajectories of two random maps was investigated. It was shown that mean coalescence time between trajectories can be used to characterize regions of the phase space of the maps. The mean coalescence time between trajectories scales as a power law as a function of the numerical precision of the calculations in the contracting and transitions regions of the maps. In the contracting regions the exponent of the power law is approximately one for both maps and it is approximately two in the transition regions for both maps. In the chaotic regions, the mean coalescence time between trajectories scales as an exponential law as a function of the numerical precision of the calculations for the maps. For both maps the exponents are of the same order of magnitude in the chaotic regions.  相似文献   

15.
A block encryption algorithm using dynamic sequences generated by multiple chaotic systems is proposed in this paper. In this algorithm, several one-dimension chaotic maps generate pseudo-random sequences, which are independent and approximately uniform. After a series of transformations, the sequences constitute a new pseudo-random sequence uniformly distributing in the value space, which covers the plaintext by executing Exclusive-OR and shifting operations some rounds to form the cipher. This algorithm makes the pseudo-random sequence possess more concealment and noise like characteristic, and overcomes the periodic malpractice caused by the computer precision and single chaotic system. Simulation results show that the algorithm is efficient and useable for the security of communication system.  相似文献   

16.
Chaos optimization algorithms (COAs) usually utilize the chaotic map like Logistic map to generate the pseudo-random numbers mapped as the design variables for global optimization. Many existing researches indicated that COA can more easily escape from the local minima than classical stochastic optimization algorithms. This paper reveals the inherent mechanism of high efficiency and superior performance of COA, from a new perspective of both the probability distribution property and search speed of chaotic sequences generated by different chaotic maps. The statistical property and search speed of chaotic sequences are represented by the probability density function (PDF) and the Lyapunov exponent, respectively. Meanwhile, the computational performances of hybrid chaos-BFGS algorithms based on eight one-dimensional chaotic maps with different PDF and Lyapunov exponents are compared, in which BFGS is a quasi-Newton method for local optimization. Moreover, several multimodal benchmark examples illustrate that, the probability distribution property and search speed of chaotic sequences from different chaotic maps significantly affect the global searching capability and optimization efficiency of COA. To achieve the high efficiency of COA, it is recommended to adopt the appropriate chaotic map generating the desired chaotic sequences with uniform or nearly uniform probability distribution and large Lyapunov exponent.  相似文献   

17.
In this paper we present a chaos-based evolutionary algorithm (EA) for solving nonlinear programming problems named chaotic genetic algorithm (CGA). CGA integrates genetic algorithm (GA) and chaotic local search (CLS) strategy to accelerate the optimum seeking operation and to speed the convergence to the global solution. The integration of global search represented in genetic algorithm and CLS procedures should offer the advantages of both optimization methods while offsetting their disadvantages. By this way, it is intended to enhance the global convergence and to prevent to stick on a local solution. The inherent characteristics of chaos can enhance optimization algorithms by enabling it to escape from local solutions and increase the convergence to reach to the global solution. Twelve chaotic maps have been analyzed in the proposed approach. The simulation results using the set of CEC’2005 show that the application of chaotic mapping may be an effective strategy to improve the performances of EAs.  相似文献   

18.
约束粒子群算法求解自融资投资组合模型研究   总被引:1,自引:0,他引:1  
在马克维茨投资组合的均值-方差模型框架下,给出限制投资数量的自融资投资组合优化模型.在金融市场上有广泛应用,为了有效地求解此类问题的最优解,采用一种基于广义学习策略的约束粒子群算法(CPSO).CPSO算法具有广义的学习策略,极大地提升了种群的多样性,进而提升种群跳出局部最优解的能力.在基准函数测试中,结果显示CPSO算法有较好的运行结果.在自融资投资组合优化模型上,优化结果表明CPSO算法是可行的,有效的,并有较好的优化结果.  相似文献   

19.
A novel chaotic hash algorithm based on a network structure formed by 16 chaotic maps is proposed. The original message is first padded with zeros to make the length a multiple of four. Then it is divided into a number of blocks each contains 4 bytes. In the hashing process, the blocks are mixed together by the chaotic map network since the initial value and the control parameter of each tent map are dynamically determined by the output of its neighbors. To enhance the confusion and diffusion effect, the cipher block chaining (CBC) mode is adopted in the algorithm. Theoretic analyses and numerical simulations both show that the proposed hash algorithm possesses good statistical properties, strong collision resistance and high flexibility, as required by practical keyed hash functions.  相似文献   

20.
Rainfall forecasting by technological machine learning models   总被引:5,自引:0,他引:5  
Accurate forecasting of rainfall has been one of the most important issues in hydrological research. Due to rainfall forecasting involves a rather complex nonlinear data pattern; there are lots of novel forecasting approaches to improve the forecasting accuracy. Recurrent artificial neural networks (RNNS) have played a crucial role in forecasting rainfall data. Meanwhile, support vector machines (SVMs) have been successfully employed to solve nonlinear regression and time series problems. This investigation elucidates the feasibility of hybrid model of RNNs and SVMs, namely RSVR, to forecast rainfall depth values. Moreover, chaotic particle swarm optimization algorithm (CPSO) is employed to choose the parameters of a SVR model. Subsequently, example of rainfall values during typhoon periods from Northern Taiwan is used to illustrate the proposed RSVRCPSO model. The empirical results reveal that the proposed model yields well forecasting performance, RSVRCPSO model provides a promising alternative for forecasting rainfall values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号