首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
通过Suzuki偶合反应合成了一系列胺烷基侧链取代的基于三苯胺和芴的共轭聚合物聚[4-(N,N-二甲基胺丙氧基)苯-4,4′-二苯胺-9,9-二辛基芴-4,7-二噻吩-2-基-2,1,3-苯并噻二唑](PFTD), 并对其化学结构和光电性能进行了表征. 末端胺基的存在提高了此类聚合物作为发光层应用于聚合物电致发光器件的性能(采用高功函数的金属铝作为阴极时). 结构为ITO/PVK/PFTD-5(DBT摩尔分数为5%时的聚合物)/Al的器件最大电致发射峰位于647 nm, 最大外量子效率达到了1.24%.  相似文献   

2.
采用3-烷基噻吩与对硝基苯甲醛和对二甲氨基苯甲醛的聚合反应得到了5种聚(3-烷基)噻吩取代苯甲烯衍生物:聚(3-丁基)噻吩对硝基苯甲烯(PBTNBQ)、聚(3-己基)噻吩对硝基苯甲烯(PHTNBQ)、聚(3-丁基)噻吩对二甲氨基苯甲烯(PBTDMABQ)、聚(3-己基)噻吩对二甲氨基苯甲烯(PHTDMABQ)和聚(3-辛基)噻吩对二甲氨基苯甲烯(POTDMABQ).计算其光学禁带宽度分别为PBTNBQ(1.82eV),PHTNBQ(1.85eV),PBTDMABQ(1.71eV),PHTDMABQ(1.78eV)和POTDMABQ(1.67eV).利用简并四波混频技术测量了5种聚合物薄膜的三阶非线性极化率,分别为1.74×10-8,1.82×10-8,5.62×10-9,8.64×10-9和1.22×10-8esu,均具有较大的三阶非线性光学性能.针对取代基结构对聚(3-烷基)噻吩取代苯甲烯衍生物的三阶非线性光学性能的影响从分子内极化程度和主链电子的离域程度两个方面进行了讨论.  相似文献   

3.
设计合成了3种主链相同、侧基不同的Donor(D)-π-Acceptor(A)型共轭聚合物:聚[(4,8-二辛氧基苯[1,2-b;3,4-b]二噻吩)-(9-(4-氰基苯基)-9H-咔唑)](PBDTCz-CN)、聚[(4,8-二辛氧基苯[1,2-b;3,4-b′]二噻吩)-(9-(4-醛基苯基)-9H-咔唑)](PBDTCz-CHO)和聚[(4,8-二辛氧基苯[1,2-b;3,4-b]二噻吩)-(9-(4-硝基苯基)-9H-咔唑)](PBDTCz-NO_2)。通过调变侧基上的受体基团,比较了氰基、醛基、硝基对聚合物光学和电学性能的影响,讨论了影响聚合物光电转换效率的主要因素。3种聚合物的光学带隙和线性吸收系数依次分别为2.32 eV,152.0 L/(g·cm);2.43 eV,58.5 L/(g·cm)和2.25 eV,85.5 L/(g·cm)。在这些聚合物中,彼此间的最高占据分子轨道(HOMO)能级差距很小,PBDTCz-NO_2的最低未占据分子轨道(LUMO)能级最低(-3.38eV)。在100 W/m~2模拟太阳光的照射下,基于这些聚合物的光伏器件(器件结构:ITO/PEDOT:PSS/Polymer:[70]PCBM(1:2)/Ca/A1)的光电转换效率分别为0.44%(PBDTCz-CN)、0.001 8%(PBDTCz-CHO)和0.23%(PBDTCz-NO_2)。低的光电转换效率主要归因于低的短路电流,而影响短路电流的主要原因有自身吸光性能的限制和弱的π-π堆砌作用。  相似文献   

4.
报道了3种取代聚噻吩,3-己基聚噻吩(P3HT)、3,4-二戊基聚噻吩(P34PT)、3-辛氧基聚噻吩(P3OOT)的合成方法1、H-NMR测试结果及UV-Vis吸收光谱和荧光光谱分析结果。用密度泛函方法计算了无取代噻吩、3-乙基噻吩、3,4-二乙基噻吩、3-乙氧基噻吩二聚体的电子性能。随聚合度的提高,聚合物能隙变窄。无取代噻吩二聚体的能隙为4.216 eV,重复单元长度为0.392 7 nm;乙基取代噻吩二聚体的能隙为4.733 eV,重复单元长度为0.393 9 nm;乙氧基取代噻吩二聚体的能隙为3.890 eV,重复单元长度为0.390 8 nm;双乙基取代噻吩二聚体的能隙为5.168 eV,重复单元长度为0.392 5 nm。理论变化规律与实验结果基本一致。  相似文献   

5.
本文通过Heck偶联法制备一种新型p-/n-掺杂型电致发光材料--3-十二烷氧基噻吩-共-1,3,4-噁二唑交替聚合物(P3DDOTV-OXD), 用核磁共振(1H NMR)及凝胶色谱(GPC)对结构进行了分析表征。用紫外光谱(Uv-vis)、荧光光谱法及电化学分析法对其光电学性能进行了研究。结果表明:聚合物的重均分子量为:5287,在氯仿溶液中,聚合物的紫外最大吸收波长为314nm,在401nm处发射出明亮的蓝光;较其均聚物(516nm)蓝移了115nm。 循环伏安测定结果表明: P3DDOTV-OXD在正、负向区域分别出现了一对氧化还原峰对,电子亲和能(Ia)为:2.88eV,有利于电子从阴极的注入。3-十二烷氧基噻吩-共-噁二唑交替共聚物实现了集空穴、电子双向传输为一体的高性能的聚合物光电功能材料的性能要求。  相似文献   

6.
一种含三苯胺链段的PPV类交替共聚物的合成、表征及性能   总被引:5,自引:0,他引:5  
合成了三苯胺二醛和1-甲氧基-4-辛氧基-2,5-二甲苯双(三苯基氯化)两种单体,通过Wittig反应制得了共轭聚合物,对共轭聚合物进行了表征和性能测试.这类共轭聚合物的氯仿溶液和膜在紫外光激发下能发出强的蓝绿光,与小分子三苯胺衍生物(TPD)相比,具有相对较高的热稳定性和良好的成膜性.电化学分析表明聚合物具有很好的空穴传输能力.同时对共轭聚合物的光致发光和电致发光性能进行了研究,结果表明,此聚合物与同类聚对亚苯基亚乙烯基(PPV)型聚合物相比具有较低的驱动电压和较高的发光亮度,是一种潜在的有机高分子电致发光材料.  相似文献   

7.
以三氯化铁为催化剂,采用氧化偶联聚合法合成具有交联活性的聚3-(2-(甲基丙烯酰氧基)乙基)噻吩(P3MET).用红外光谱、凝胶液相色谱、等速升温热失重分析、紫外-可见光光谱和循环伏安法表征聚合物的结构、热稳定性能和光电性能.结果表明:聚合物的氯仿溶液在350~573 nm处有吸收,最大吸收峰位于410 nm,其禁带宽度为2.1 eV;聚合物的热分解温度为300~400℃,热稳定性能良好;聚合物的电子亲和势能级为3.52 eV,电子离子势能级为5.62 eV.  相似文献   

8.
合成了3-丁基噻吩和3-辛基噻吩,并分别与对硝基苯甲醛和对二甲氨基苯甲醛进行聚合反应得到了具有极低能隙的聚(3-丁基噻吩)对硝基苯甲烯(PBTNBQ)、聚(3-丁基噻吩)对二甲氨基苯甲烯(PBTDMABQ)和聚(3-辛基噻吩)对二甲氨基苯甲烯(POTDMABQ).采用红外光谱、核磁共振氢谱和紫外-可见吸收光谱确认了产物的结构,发现中间产物聚(3-烷基)噻吩取代苯甲烷衍生物中存在部分醌化产物.根据Eg与入射光子能量hν的关系,采用2种模型计算了3种聚合物薄膜的光学禁带宽度为PBTNBQ1.63,1.84eV;PBTDMABQ1.44,1.75eV和POTDMABQ1.32,1.69eV,属窄能隙共轭聚合物.  相似文献   

9.
几种电致发光聚合物材料的研究进展   总被引:1,自引:0,他引:1  
袁金磊 《广州化学》2005,30(2):51-56
介绍了几种典型的电致发光聚合物材料,包括聚(对苯乙烯撑)及其衍生物、聚噻吩及其衍生物、聚芴及其衍生物,对它们的结构、制备方法、特点进行了归纳和讨论。其中最重要的是聚(对苯乙烯撑)(PPV)及其衍生物,目前采用较多的制备方法是前聚物法和强碱诱导的去卤缩合法以及电化学聚合法。在苯环上引入长链烷烃、烷氧基或芳基后的取代PPV,即PPV的衍生物,可溶于很多有机溶剂。可溶性PPV衍生物为制备多层电致发光聚合物器件提供了有效途径。文章还对电致发光聚合物材料存在的问题和发展前景进行了探讨和展望。  相似文献   

10.
3-烷基噻吩交替共聚物的合成及其电化学性质   总被引:1,自引:0,他引:1  
通过Heck偶联法合成了4种3-烷基噻吩交替共聚物:聚(2,4-二乙烯基-3-己基噻吩-1,3,4-二唑)(P3HT-OXD)、聚(2,4-二乙烯基-3-辛基噻吩-1,3,4-二唑)(P3OT-OXD)、聚(2,4-二乙烯基-3-己基噻吩-吡啶)(P3HT-Py)和聚(2,4-二乙烯基-3-辛基噻吩-吡啶)(P3OT-Py). 用NMR、GPC等测试技术对其结构进行了表征. 采用循环伏安法、紫外-可见吸收光谱法研究了系列共聚物光电性能. 结果表明,随噻吩环3位取代烷基碳链的增长,聚合物电离能(Ip)减小,带隙(Eg)也随之变窄. 其中,P3OT-OXD的Eg比P3HT-OXD小0.11 eV,P3OT-Py的Eg比P3HT-Py小0.19 eV,在3-烷基噻吩聚合物主链上引入吸电子能力较强的二唑单元,可有效提高共聚物电子亲合能(Ea),对提高电子传输能力,改善电子与空穴注入平衡有积极作用.  相似文献   

11.
Two new poly(p‐phenylene vinylene) derivatives OX1‐PPV and OX2‐PPV bearing two 1,3,4‐oxadiazole rings per repeat unit and a fully conjugated backbone with solubilizing dodecyloxy side groups were synthesized and investigated. The amorphous conjugated polymers had glass‐transition temperature values of 60–75 °C and emitted intense blue or greenish‐blue light in solution with photoluminescence (PL) emission maxima at 379–492 nm and PL quantum yields of 0.41–0.52. In the solid state they emitted yellowish‐green light with PL emission maxima at 533–555 nm. Cyclic voltammetry showed that both conjugated polymers had reversible reduction and irreversible oxidation, making them n‐type materials. The electron affinity of OX2‐PPV was estimated as 2.85 eV whereas that of OX1‐PPV was 2.75 eV. Yellow electroluminescence (EL) was achieved from single‐layer light‐emitting diodes of OX2‐PPV with an EL emission maximum at 555 nm and a brightness of 70 cd/m2. Polymer OX2‐PPV, which was functionalized with 2,6‐bis(1,3,4‐oxadiazole‐2‐yl)pyridine, demonstrated sensitivity to various metal ions as a fluorescence‐mode chemosensor. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2112–2123, 2004  相似文献   

12.
2,5‐Bis(4‐bromophenyl)‐3,4‐diphenylthiophene was synthesized from benzyl chloride and sulfur and through the subsequent bromination of the intermediate 2,3,4,5‐tetraphenylthiophene. It was condensed with 2,7‐dibromo‐9,9‐dihexylfluorene via a nickel‐mediated Yamamoto coupling reaction to afford a new series of statistical copolymers with various compositions. In addition, poly(9,9‐dihexylfluorene) (PF) was synthesized under the same conditions for comparison. All the polymers were soluble in common organic solvents such as tetrahydrofuran (THF), chloroform, and dichloromethane. Their glass‐transition temperatures increased with an increase in the tetraphenylthiophene (TPT) content in the polymers, and they were 63–149 °C. The solutions of the polymers in THF emitted intense blue light with a photoluminescence maximum at 418–440 nm and quantum yields of 0.32–0.62. Thin films of the polymers with TPT fractions lower than 20 mol % emitted blue‐green light with two well‐resolved peaks at 445 and 520 nm and an optical band gap of about 2.85 eV. A thin film of the polymer with aTPT fraction of 50 mol % emitted pure blue light with a maximum at 419 nm and an optical band gap of 3.28 eV. An enhancement of the light‐emitting‐diode brightness by a factor of ~8 with respect to that of PF was achieved in apolymer containing 5 mol % TPT. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4015–4026, 2006  相似文献   

13.
Three new poly(p‐phenylenevinylene) derivatives—PO, POD, and POP—with oxadiazole and pyridine rings along the main chain were synthesized via Heck coupling. The polymers were amorphous and dissolved readily in common organic solvents. They showed relatively low glass‐transition temperatures (up to 42 °C) and satisfactory thermal stability. Solutions of the polymers emitted blue‐greenish light with photoluminescence (PL) emission maxima around 460 nm and PL quantum yields of 0.28–0.49. Thin films of the polymers displayed PL emission maxima at 461–521 nm, and their tendency to form aggregates was significantly influenced by the chemical structure. Light‐emitting diodes with polymers PO and POP, with an indium tin oxide/poly(ethylenedioxythiophene) (PEDOT)/polymer/Ca configuration, emitted yellow and green light, respectively, and this could be attributed to excimer emission. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3212–3223, 2004  相似文献   

14.
2,6‐bis(4‐Distyrylpyridine) ( 1 ) was synthesized by the condensation of 2,6‐dimethylpyridine with 4‐bromobenzaldehyde. Two new series of soluble random or alternating polyfluorenes ( PF‐Py ) and poly‐p‐phenylenes ( PP‐Py ) with various compositions were prepared by Suzuki coupling utilizing 1 as a comonomer. These polymers showed optical band gaps of 3.00–3.07 eV and photoluminescence (PL) quantum yields in solution of 0.37–0.91 for PF‐Py and 0.29–0.38 for PP‐Py . Polymers PF‐Py emitted blue light with PL maximum at 410–424 nm in solution and 406–428 nm in thin films that was red shifted with increasing distyrylpyridine content. Polymers PP‐Py behaved as blue emitters both in solution and in solid state, with PL maximum at 416–436 nm. The optical properties of these polymers could be tuned by the reversible protonation–deprotonation process of the pyridine ring. The emitted color of the polymers in solution and thin film could be changed continuously between blue and green (PL maximum up to about 520 nm) by exposing the polymers to the acid or base environment. Thin films of PF‐Py displayed excellent color stability with a small red shift of 10 nm but without additional emission band in the long wave region of the spectrum, even after being annealed at high temperature for a long time. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4486–4495, 2005  相似文献   

15.
Two new soluble alternating carbazolevinylene‐based polymers POXD and PTPA as well as the corresponding model compounds MOXD and MTPA were synthesized by Heck coupling. POXD and MOXD contained 2,5‐diphenyloxadiazole segments, while PTPA and MTPA contained triphenylamine segments. All samples displayed high thermal stability. The polymers had higher glass transition temperature (Tg) than their corresponding model compounds. The samples showed absorption maximum at 364–403 nm with optical band gap of 2.62–2.82 eV. They emitted blue‐green light with photoluminescence (PL) emission maximum at 450–501 nm and PL quantum yields in THF solution of 0.15–0.36. The absorption and the PL emission maxima of PTPA and MTPA were blue‐shifted as compared to those of POXD and MOXD . The electroluminescence (EL) spectra of multilayered devices made using four materials exhibited bluish green emissions, which is well consistent with PL spectra. The EL devices made using poly(vinyl carbazole) doped with MOXD and MTPA as emitting materials showed luminances of 12.1 and 4.8 cd m?2. POXD and PTPA exhibited 25.4, and 96.3 cd m?2, respectively. The polymer containing the corresponding molecules in the repeating group showed much higher device performances. Additionally, POXD and MOXD exhibited better stability of external quantum efficiency (EQE) and luminous efficiency with current density resulting from enhancing the electron transporting properties. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5592–5603, 2008  相似文献   

16.
A series of conjugated hyperbranched polymers, hyperbranched copolymers, and linear polymers containing 2‐pyran‐4‐ylidenemalononitrile (acceptor) and triphenylamine/fluorene (donor) units were synthesized and characterized by FTIR, 1H NMR, thermogravimetric analyses, differential scanning calorimetry, gel permeation chromatography, UV–visible, photoluminescence, and cyclic voltammetry measurements. All the polymers show red‐light emission in the range of 566–656 nm both in solution and in solid state. The quantum efficiency of the polymers was in the range of 56–82%. Among the six polymers synthesized, only polymers containing fluorene units show Tg and polymers based on triphenylamine not exhibit Tg. The band gap of these polymers were found to be reasonably low; hyperbranched copolymer containing fluorene unit shows lowest band gap of 2.18 eV due to the stabilization of LUMO energy level by the electron withdrawing ? CN groups. The thermal and solubility behavior of the polymers were found to be good. All the EL spectra of the devices (indium‐tin oxide/poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate)/polymer/2,9‐dimethyl‐4,7‐diphenyl‐1,10‐phenanthroline/tris(8‐hydroxyquinoline)aluminum)/LiF/Al) show red‐light emission, and the device fabricated with P3 and P4 shows maximum luminance and luminous efficiency of 4104 cd m?2 and 0.55 cd Å?1 and 3696 cd m?2 and 0.47 cd Å?1, respectively, indicates that they had the best carrier balance. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

17.
A novel luminescent metal complex, (MQPF)3Al2, with 8-hydroxyquinoline aluminum and 9,9-diphenylfluorene was synthesized. The optical properties were investigated by UV-vis absorption and fluorescence emission spectra. The results showed that the luminescence quantum yield of (MQPF)3Al2 was 0.612 in THF and it emitted red light with the band gap of 3.18 eV estimated from the onset absorption. The emission spectra exhibited obvious solvent effect. With the increase of polarity of solvents the fluorescence spectra changed obviously and appeared blue shift about 60 nm at room temperature. In addition, the light-emitting can be quenched by both electron donor (N,N-dimethylaniline) and electron acceptor (Fullerene), where the processes followed the Stern-Volmer equation. However, when adding 1,4-dicyanobenzene (DCB) which was a stronger electron acceptor to the solution of (MQPF)3Al2, the fluorescent intensity was increased.  相似文献   

18.
Novel deep‐red emissive poly(2,6‐BODIPY‐ethynylene)s bearing dodecyl side chains (polymers A , B , and C ) have been prepared by palladium‐catalyzed Sonogashira polymerization of 2,6‐diiodo‐functionalized BODIPY monomers with 2,6‐diethynyl‐functionalized BODIPY monomers. These polymers emit in the deep‐red region with emission maxima at up to 690 nm, and exhibit significant red shifts (up to 166 and 179 nm) of both absorption and emission maxima compared with their parent BODIPY dyes due to significant extension of π‐conjugation. These polymers possess good thermal stability with decomposition temperature between 270 and 360 °C. The polymers exhibit a little larger Stokes shifts and shorter lifetime than their corresponding BODIPY dyes. The solid state thin films of polymers A , B , and C emit in near‐infrared region between 723 and 743 nm, and show significantly red shifts (up to 57 nm) in absorption and emission maxima relative to their polymer solution. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5354–5366, 2009  相似文献   

19.
Mo Y  Jiang X  Cao D 《Organic letters》2007,9(21):4371-4373
Soluble poly(3,6-fluorene) and its copolymer were synthesized by nickel-catalyzed coupling. Poly(3,6-fluorene) exhibited the optical band gap of 3.6 eV, the emission maximum at 347 nm, and the HOMO level of -6.05 eV. These results confirm that 3,6-linkage is an effective way to get wide band gap conjugated polymers. Furthermore, its copolymer containing triarylamine moieties emits deep-blue light, which means that the adjustable blue light emission can be obtained from their copolymers via energy transfer.  相似文献   

20.
A novel conjugated poly[(fluorene‐2,7‐vinylene)‐alt‐(1,4‐phenylenevinylene)] derivative 2 with quaternizable tertiary amino groups was synthesized by Heck coupling of a substituted 2,7‐dibromofluorene and 1,4‐dialkoxy‐2,5‐divinylbenzene. The corresponding quaternary ammonium cationic polyelectrolyte 3 was obtained by the treatment of 2 with bromoethane. Both polymers were soluble in common organic solvents, like tetrahydrofuran, chloroform, and dichloromethane. Polymer 3 showed a limited solubility in alcohols and was insoluble in water. Photophysical and electrochemical properties of the resulting polymers were fully investigated. An intensive green photoluminescence (PL) with maxima at 550 and 545 nm was observed from thin films of 2 and 3 polymers, respectively, red‐shifted compared with the PL emission spectra measured in the solution. The electrochemical band gaps were 2.38–2.45 eV. Single‐layer and double‐layer (with poly[3,4‐(ethylenedioxy)thiophene]/poly (styrenesulfonate) (PEDOT:PSS)) light‐emitting devices (LEDs) with ITO and Al electrodes were prepared and studied. They emitted a green light and their electroluminescence (EL) spectra were similar to those of PL thin films. The external EL efficiency was determined to be 0.43 and 0.32% for ITO/PEDOT:PSS/ 2 /Al and ITO/PEDOT:PSS/ 3 /Al LEDs, respectively. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1016–1027, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号