首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Linear and non-linear properties of ion acoustic wave (IAW) propagating in a two-electron temperature plasma are investigated from both analytical and numerical perspectives by employing the fluid theory. A one-dimensional modified Korteweg de Vries equation is derived for the IAW using the reductive perturbative technique in a nonplanar geometry. It is observed that the ion acoustic soliton in a two-temperature plasma admits rarefactive (dip like) solitons. In the limit that the cold electron population goes to zero, it is observed that the ion acoustic soliton yields compressive (hump like) solitons. The variation of the ion acoustic soliton with different plasma parameters is also shown. The present investigation may be beneficial to explain some aspects of ion acoustic rarefactive solitary structures observed in space environments where two-electron temperature plasmas have been observed.  相似文献   

2.
The nonlinear properties of small amplitude electron-acoustic (EA) solitary and shock waves in a homogeneous system of unmagnetized collisionless plasma with nonextensive distribution for hot electrons have been investigated. A reductive perturbation method used to obtain the Kadomstev-Petviashvili-Burgers equation. Bifurcation analysis has been discussed for non-dissipative system in the absence of Burgers term and reveals different classes of the traveling wave solutions. The obtained solutions are related to periodic and soliton waves and their behavior are shown graphically. In the presence of the Burgers term, the EXP-function method is used to solve the Kadomstev-Petviashvili-Burgers equation and the obtained solution is related to shock wave. The obtained results may be helpful in better conception of waves propagation in various space plasma environments as well as in inertial confinement fusion laboratory plasmas.  相似文献   

3.
The nonlinear properties of small amplitude electron-acoustic(EA) solitary and shock waves in a homogeneous system of unmagnetized collisionless plasma with nonextensive distribution for hot electrons have been investigated.A reductive perturbation method used to obtain the Kadomstev-Petviashvili-Burgers equation.Bifurcation analysis has been discussed for non-dissipative system in the absence of Burgers term and reveals different classes of the traveling wave solutions.The obtained solutions are related to periodic and soliton waves and their behavior are shown graphically.In the presence of the Burgers term,the EXP-function method is used to solve the Kadomstev-Petviashvih-Burgers equation and the obtained solution is related to shock wave.The obtained results may be helpful in better conception of waves propagation in various space plasma environments as well as in inertial confinement fusion laboratory plasmas.  相似文献   

4.
The modulational instability of dust ion acoustic waves in a dust plasma with ion-dust collision effects is studied. Using the perturbation method, a modified nonlinear Schrodinger equation contains a damping term that comes from the effect of the ion-dust collision is derived. It is found that the inclusion of the ion-dust collision would modify the modulational instability of the wave packet and could not admit any stationary envelope solitary waves.  相似文献   

5.
The modulational instability of dust ion accoustic waves in a dust plasma with ion-dust collision effects is studied.Using the perturbation method,a modified nonlinear Schroedinger equation contains a damping term that comes from the effect of the ion-dust collision is derived.It is found that the inclusion of the ion-dust collision would modify the modulational instability of the wave packet and could not admit any stationary envelope solitary waves.  相似文献   

6.
We calculate transmission and reflection coefficients for an ion acoustic wave incident from the upstream direction upon a plasma discontinuity of width much less than the wavelength. In the limit of an infinitely strong discontinuity there is complete in phase reflection.  相似文献   

7.
Obliquely propagating electron acoustic shock waves in plasma with stationary ions, cold and superthermal hot electrons are investigated in magnetized plasma. Employing reductive perturbation method, Korteweg-de Vries-Burgers equation (KdVB) is derived in the small amplitude approximation limit. The analytical and numerical calculations of the KdVB equation show the variation of shock waves structure (amplitude, velocity, and width) with different plasma parameters. Particle density (α), superthermal parameter (κ), electron temperature ratio (??), kinetic viscosity (η0), obliqueness (kz), and strength of magnetic field (ωc) significantly modify the properties of the shock waves structures. The present investigation is useful to understand dissipative structures observed in space or laboratory plasma where multielectrons population with superthermal electrons are prevalent.  相似文献   

8.
9.
10.
In this paper an investigation into dust acoustic solitary waves(DASWs) in the presence of superthermal electrons and ions in a magnetized plasma with cold dust grains and trapped electrons is discussed. The dynamic of both electrons and ions is simulated by the generalized Lorentzian(κ) distribution function(DF). The dust grains are cold and their dynamics are studied by hydrodynamic equations. The basic set of fluid equations is reduced to modified Korteweg-de Vries(mKdV) equation using Reductive Perturbation Theory(RPT). Two types of solitary waves, fast and slow dust acoustic soliton(DAS) exist in this plasma. Calculations reveal that compressive solitary structures are possibly propagated in the plasma where dust grains are negatively(or positively) charged. The properties of DASs are also investigated numerically.  相似文献   

11.
A plasma composed by helium, argon, and hydrogen in a cascade arc of MAECKER-SHUMAKER type was examined in this paper. The spectrum of the studied plasma was recorded on the spectral plates by means of a STE 1 spectrograph. A photographic spectrophotometry method was used to determine the intensity and profiles of selected HeI, ArI, ArII, and H lines. On the grounds of the experimental results a spectroscopic diagnostics of the studied plasma has been made using different methods. It was found that there are the non-equilibrium effects in those plasmas. Observed diversions from the local thermodynamic equilibrium (LTE) could be explained on the grounds of the partial LTE model given by DRAWIN.  相似文献   

12.
The small angle scattering of light from a pulsed CO2 laser has been used to measure ion acoustic waves excited in a low density plasma. The laser is a hybrid laser consisting of a high pressure TEA discharge and a low pressure continuous discharge. The scattered light is detected by heterodyning, using laser light as the local oscillator. Two methods of providing the laser light local oscillator have been used. The dependence of the scattered light on the ion acoustic wavelength has been measured. The amplitude of the scattered light compared with the amplitude of the waves in the plasma indicates that the heterodyne mixing efficiency is better than 10 percent.  相似文献   

13.
14.
A theoretical investigation has been made on obliquely propagating ion‐acoustic (IA) solitary structures in a three components magneto‐plasma containing cold inertial ions, Boltzmann distributed positrons, and hot non‐thermal electrons. The Zakharov‐Kuznetsov equation has been derived by the reductive perturbation method, and its solitary wave solution has been analyzed. Multi‐dimensional instability has also studied by the small‐k (long wave‐length plane wave) perturbation expansion technique, which is found to exist in such a plasma. The effects of the external magnetic field, nonthermal electrons, obliqueness and temperature ratio have significantly modified the basic properties of small but finite‐amplitude IA solitary waves, such as amplitude, width, instability criterion and the growth rate. The present investigation contributes to the physics of the nonlinear IA waves in space and laboratory electron‐positron‐ion magneto‐plasmas in which wave damping produces an electron tail. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
The nonlinear dust acoustic waves in two-dimensional dust plasma with dust charge variation is analytically investigated by using the formally variable separation approach. New analytical solutions for the governing equation of this system have been obtained for dust acoustic waves in a dust plasma for the first time. We derive exact analytical expressions for the general case of the nonlinear dust acoustic waves in two-dimensional dust plasma with dust charge variation.  相似文献   

16.
Considering a plasma slab we show that electromagnetic field perturbations, which within linear theory are identified as leaking modes, can appear in the form of solitary waves that propagate along the slab.  相似文献   

17.
Under Lagrange coordinates, the relativistic spherical plasma wave in a collisional and warm plasma is discussed theoretically. Within the Lagrange coordinates and using the Maxwell and hydrodynamics equations, a wave equation describing the relativistic spherical wave is derived. The damped oscillating spherical wave solution is obtained analytically using the perturbation theory. Because of the coupled effects of spherical geometry,thermal pressure, and collision effect, the electron damps the periodic oscillation. The oscillation frequency and the damping rate of the wave are related to not only the collision and thermal pressure effect but also the space coordinate. Near the center of the sphere, the thermal pressure significantly reduces the oscillation period and the damping rate of the wave, while the collision effect can strongly influence the damping rate. Far away from the spherical center, only the collision effect can reduce the oscillation period of the wave, while the collision effect and thermal pressure have weak influence on the damping rate.  相似文献   

18.
The nonlinear dust acoustic waves in two-dimensional dust plasma with dust charge variation is analytically investigated by using the formally variable separation approach. New analytical solutions for the governing equation of this system have been obtained for dust acoustic waves in a dust plasma for the first time. We derive exact analytical expressions for the general case of the nonlinear dust acoustic waves in two-dimensional dust plasma with dust charge variation.  相似文献   

19.
Longitudinal waves in a spatially uniform magnetized plasma are studied. It is demonstrated that the coupling coefficients, which describe the interaction between the different waves, can be derived in a comparatively simple way by means of coupled mode theory even if dissipative effects are taken into account.  相似文献   

20.
Matveev  A. I. 《Russian Physics Journal》2019,61(10):1778-1787
Russian Physics Journal - The work of external sources uniformly distributed in a homogeneous plasma and exciting in it a circularly polarized wave with phase velocity lower than the velocity of...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号