首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fluorinated ketones are intriguing compounds in synthetic chemistry and life science‐related fields. The development of efficient methodologies to obtain these compounds is of significant importance and has therefore attracted considerable attention. This Minireview highlights recent progress made in the synthesis of fluorine‐containing ketones, with an emphasis on those methods in which the construction of carbonyl groups is synergetic with distal (β‐, γ‐, δ, etc.) incorporation of fluorine atoms or fluorinated groups.  相似文献   

2.
In this paper, two D-π-D type compounds, C1 and C2 , containing dihydrodinaphthopentacene (DHDNP) as a π-bridge, p-methoxydiphenylamine and p-methoxytriphenylamine groups as the donor groups were synthesized. The four 4-hexylphenyl groups at the sp3-carbon bridges of DHDNP were acquainted with control morphology and improving solubility. The light absorption, energy level, thermal properties, and application as hole-transporting materials in perovskite solar cells of these compounds were fully investigated. The HOMO/LUMO levels and energy gaps of these DHDNP-based molecules are suitable for use as hole-transporting materials in PSCs. The best power conversion efficiencies of the PVSCs based on the C1 and C2 are 15.96% and 12.86%, respectively. The performance of C1 is comparable to that of the reference compound spiro-OMeTAD (16.38%). Compared with spiro-OMeTAD, the C1 -based PVSC device showed good stability, which was slightly decreased to 98.68% of its initial efficiency after 48 h and retained 81% of its original PCE after 334 h without encapsulation. These results reveal the potential usefulness of the DHDNP building block for further development of economical and highly efficient HTMs for PVSCs.  相似文献   

3.
Combinatorial synthesis has developed within a few years from a laboratory curiosity to a method that is taken seriously in drug research. Rapid progress in molecular biology and the resulting ability to determine the activity of new substances extremely efficiently have led to a change in paradigm for the synthesis of test compounds: in addition to the conventional procedure of synthesizing one substance after another, new methods allowing simultaneous creation of many structurally defined substances are becoming increasingly important. A characteristic of combinatorial synthesis is that a reaction is performed with many synthetic building blocks at once—in parallel or in a mixture— rather than with just one building block. All possible combinations are formed in each step, so that a large number of products, a so-called library, is obtained from only a few reactants. Several methods have been developed for combinatorial synthesis of small organic molecules, based on research into peptide library synthesis: single substances are produced by highly automated parallel syntheses, and special techniques enable targeted synthesis of mixtures with defined components. Many structures can be obtained by combinatorial synthesis, and the size of the libraries created ranges from a few individual compounds to many thousand substances in mixtures. This article gives an overview of the combinatorial syntheses of small organic molecules reported to date, performed both in solution and on a solid support. In addition, different techniques for identification of active compounds in mixtures are presented, together with ways to automate syntheses and process the large amounts of data produced. An overview of pionering companies active in this area is also given. The final outlook attempts to predict the future development of this exponentially growing area and the influence of this new thinking in other areas of chemistry.  相似文献   

4.
We report the synthesis of twelve indole derivatives bearing nitro or amide groups via Fischer indole methodology followed by reduction/acetylation and amidation reactions. After thorough characterization, these indoles were subjected to a number of studies in order to evaluate their bioactive potential as photosynthesis and plant growth inhibitors. Firstly, these molecular hybrids were evaluated as photosystem II (PSII) inhibitors through chlorophyll a (Chl a) fluorescence measurement. In this study, 6-chloro-8-nitro-2,3,4,9-tetrahydro-1H-carbazole ( 15a ) and 5-chloro-2,3-dimethyl-7-nitro-1H-indole ( 15b ) showed the best results by reducing the phenomenological parameters of reaction centers ABS/RC, TR0/RC and ET0/RC of PSII. Electron chain blockage by these compounds may lead to diminished ATP synthesis and CO2 fixation which interrupt the plant development. The compounds 15a and 15b both act as postemergent herbicides, reducing the dry biomass of Ipomoea grandifolia and Senna alata weeds by an average of 40% and 37%, respectively, corroborating the fluorescence results. Additionally, the molecular docking study revealed that the presence of strong electron-withdrawing groups at the indole phenyl ring is important for the ligand’s interaction with the binding pocket of protein D1 on PSII. The optimization of these molecular features is the goal of our research group in further understanding and development of new potent herbicides.  相似文献   

5.
Nitrogen heterocycles represent a highly important class of compounds which are widely used in materials science, agrochemistry, and medicinal chemistry. Therefore, there is continuing interest in the development of convenient, efficient, and environmentally benign synthetic methods for the construction of nitrogen containing heterocycles. Due to its natural abundance, ease of use, and promising application in industry, the use of visible light as a driving force for chemical reactions has received considerable attention in the past few years. This account summarizes the synthesis of N‐heterocycles using visible‐light photoredox catalysis published in the last two years, according to the size and type of the formed N‐heterocyclic rings. In the context of seminal works of others in this area, a concise summary of the contributions of the authors is also offered.  相似文献   

6.
In an effort to obtain more insight into the anti-HIV efficacy of MKC-442 analogues (1-(alkoxymethyl)-6-benzyluracils), a new series of compounds was synthesized and evaluated for inhibition of HIV-1 replication. The modifications include a reactive center such as an aldehyde or an epoxide substituted at the benzyl group. It was believed that such reactive groups could improve the activity against HIV for the Y181C mutant by forming a covalent bond to the mercapto group in cysteine in the hydrophobic pocket. Unfortunately, only moderate activities were found in cell-based assays for such compounds against wild-type HIV and no activity against the Y181C mutant. However, higher activities were found for a corresponding oxime and the precursor molecules with butenyl and allyloxy substituents in the benzyl group. A few amino-DABO and S-DABO analogues were also synthesized, but they were found inactive against HIV.  相似文献   

7.
A new parameter, the protonation susceptibility (PS), of functional groups in the chemical ionization mass spectrometry of bifunctional organic compounds is presented. In terms of quasi-equilibrium theory of unimolecular decomposition of the molecular protonated ion of [MH]+, the relative PS corresponds to the relative area under P(E) curves of [MH]+ ions that have a proton at different functional groups. Numerical evaluation of the PS values of pertinent functional groups was made by using particularly selected compounds. The results clearly indicate that PS is independent of proton affinity (PA).  相似文献   

8.
New substituted 5‐(pyridine‐3‐yl)‐1,3,4‐thiadiazoles, their sugar hydrazones and acyclic C‐nucleoside analogs as well as the corresponding thioglycoside derivatives were synthesized. The synthesized compounds were tested for their antimicrobial activity against Escherichia coli, Bacillus subtilis, Staph aureus, Aspergillus niger, and Candida albicans The obtained results indicated that most of tested compounds exhibited moderate to high antimicrobial activity while few compounds were found to exhibit little or no activity against the tested microorganisms.  相似文献   

9.
In recent years, many investigations on the anthocyanins of the fresh Lycium ruthenicum Murray fruits have been reported; while few studies about dried fruits have been published. In this study, chemical profile of dried fruits was illustrated by a high-performance liquid chromatography–tandem mass spectrometry method, which provided evidence for the certain identification of the main anthocyanins. Among these compounds, nine of them were selected as marker compounds for the semiquantitative evaluation, using a simple and reliable method by high-performance liquid chromatography–photodiode array detection (HPLC–DAD), with the combination of chromatographic fingerprint analysis. Separation was achieved on a C18 ODS 80TS QA analytical column with linear gradient elution of acetonitrile and 10% formic acid and 0.1% trifluoroacetic acid (TFA) aqueous solution. Our results showed that the contents of anthocyanins of dried L. ruthenicum Murray from different origins were different. We also inferred the anthocyanin compositions of dried L. ruthenicum Murray through analyzing the UV spectrum, retention time, elution order, and MS data. Finally, eight kinds of anthocyanin compositions were identified and different from the anthocyanins in fresh L. ruthenicum Murray. In a word, this study may provide experimental data in further development and utilization of L. ruthenicum Murray.  相似文献   

10.
The ring current and local anisotropic contributions to the 1H chemical shifts of [n]annuleno[m]annulenes and [n]annulenyl[m]annulenes with n, m = 12, 14, 18 and n, m = 13, 15 are calculated. The agreement between experimental and calculated shifts for the few known compounds is very good so that the predictions for the as yet unknown compounds are reliable. The effect of an annulene ring on the shifts of the protons at the other ring in these bicyclic compounds is discussed for several types of fusion of the two constituent annulenes.  相似文献   

11.
All Enterobacteriaceae express a polysaccharide known as enterobacterial common antigen (ECA), which is an attractive target for the development of universally acting immunotherapies. The first chemical synthesis of ECA‐derived oligosaccharides for the development of such therapies is described. A number of synthetic challenges had to be addressed, including the development of concise synthetic procedures for unusual monosaccharides, the selection of appropriate orthogonal protecting groups, the development of stereoselective glycosylation methods, appropriate timing for the introduction of the carboxylic acid groups on the ManpNAcA moieties, and the selection of appropriate conditions for the reduction of multiple azido moieties. The synthetic compounds were employed to uncover immunodominant moieties of ECA. Furthermore, a monoclonal antibody (mAb) was developed that binds to ECA and can selectively recognize a wide range of Enterobacteriaceae species.  相似文献   

12.
13.
In the development of novel antimicrobial agents, we synthesized novel O‐alkylated chromones 4a–f by ultrasound‐assisted method. The synthesized compounds were characterized by IR, 1H NMR, 13C NMR, MS, and elemental analysis. All compounds were assessed in vitro for their efficacy as antimicrobial agents against four bacteria (Staphylococcus aureus , Bacillus subtilis , Escherichia coli , Pseudomonas aeruginosa ) and three fungi (Candida albicans , Candida glabrata , Candida tropicalis ). In particular, compounds 4a , 4b , 4d , 4e , and 4f exhibited potent antimicrobial activity. Molecular docking study was used to rationalize binding interaction at the active site, and the result showed good binding interaction. The compounds were also processed for in silico ADME prediction, and the result showed that compounds could be exploited as an oral drug candidate.  相似文献   

14.
Two groups of the title compounds were prepared and investigated for their mesophase formation and stability. Each group constitutes five homologous series that differ from each other by the polar substituent X (CH3O, CH3, H, Cl, and NO2). Within each homologous series, the number (n) of carbons in the alkoxy chain varies between 8, 10, 12, 14 and 16. The difference between the two groups of compounds lies in the orientation protrusion of the lateral methyl group attached to the central benzene ring. In the first group (Group I) the methyl substituent, introduced into the o-position with respect to the ester group, makes an angle of 60° with the long axis of the molecule. In the other series of compounds (Group II), the orientation angle is 120° as it is introduced into the position-3. All possible binary phase diagrams could be constructed in which the two components are corresponding positional isomers from either group. The study aimed to investigate the effect of inclusion of the lateral methyl group, as well as its spatial orientation, on the mesomorphic properties of the produced derivatives in their pure and mixed states. The compounds prepared in both groups were characterised for their mesophase behaviour by differential scanning calorimetry and polarised light microscopy. The nematic phase is the mesophase observed in most of the compounds prepared and their binary mixtures.  相似文献   

15.
New macrocyclic Schiff base Pd(II) compounds were synthesized by treating N4 and N2O2 macrocycles with palladium chloride in a 1 : 1 ratio. The resulting macrocyclic compounds were characterized by elemental, IR, 1H-NMR, 13C-NMR, mass, molar conductance, magnetic susceptibility, electronic spectra, and thermal analysis. These compounds were used as catalysts in the development of an efficient catalytic method for reduction of organic substrates having nitro, olefinic, acetylenic, and aldehyde groups under mild reaction conditions. The biological activities of all the macrocycles and macrocyclic Pd(II) compounds have been tested against gram positive (Bacillus subtilis and Staphylococcus aureus) and gram negative (Escherichia coli and Klebsiella pneumonia) bacteria and found to be more active than commercially available antibacterial drugs like Streptomycin and Ampicillin.  相似文献   

16.
Volatile metabolites in exhaled air have promising potential as diagnostic biomarkers. However, the combination of low mass, similar chemical composition, and low concentrations introduces the challenge of sorting the data to identify markers of value. In this paper, we report the development of pyAIR, a software tool for searching for volatile organic compounds (VOCs) markers in multi-group datasets, tailored for Thermal-Desorption Gas-Chromatography High Resolution Mass-Spectrometry (TD-GC-HRMS) output. pyAIR aligns the compounds between samples by spectral similarity coupled with retention times (RT), and statistically compares the groups for compounds that differ by intensity. This workflow was successfully tested and evaluated on gaseous samples spiked with 27 model VOCs at six concentrations, divided into three groups, down to 0.3 nL/L. All analytes were correctly detected and aligned. More than 80% were found to be significant markers with a p-value < 0.05; several were classified as possibly significant markers (p-value < 0.1), while a few were removed due to background level. In all group comparisons, low rates of false markers were found. These results showed the potential of pyAIR in the field of trace-level breathomics, with the capability to differentially examine several groups, such as stages of illness.  相似文献   

17.
Aziridines are highly useful compounds as building blocks for the synthesis of important organic compounds. Amino acid synthesis by aziridine ring opening reaction is a good example to the use of aziridines. Although this reaction is studied by many groups, the synthesis of amino phosphonic acids is less explored. In this study, we have carried out the ring opening reaction of aziridinyl phosphonates with a variety of alcohols including the more functional propargylic and allylic alcohols. These reactions provided functionalized α‐amino‐β‐alkoxyphosphonates in 40–91 % yield.  相似文献   

18.
A new class of deoxyribonucleic acid (DNA)-intercalating antitumor agents, novel 9-anilino-2,3-ethylenedioxyacridines (five compounds) have been synthesized and evaluated for activity against P388 leukemia in vivo. A few of them possessed the same potency of antitumor activity as amsacrine (m-AMSA) which is an important antitumor agent in clinical use.  相似文献   

19.
A new class of 4‐oxo‐4H‐1‐benzopyran derivatives were synthesized and their antiproliferative activity examined against a panel of three human cancer cell lines, that is, breast carcinoma (MDA‐MB‐468), ovarian adenocarcinoma (SK‐OV‐3), and colorectal adenocarcinoma (HT‐29). Two compounds, that is, 3‐hexyl‐7,8‐dihydroxy‐4‐oxo‐4H‐1‐benzopyran and (E)‐ethyl 3‐(7‐methoxy‐4‐oxo‐4H‐1‐benzopyran‐3‐yl)acrylate were found to be potent against all three cancer cell lines studied at 50 μM concentration. Also, the inhibitory potency of the compounds was evaluated against active Src kinase. A few of these compounds exhibited modest Src kinase inhibitory activity (IC50 = 52–57 μM). Structure‐activity relationship studies with respect to the nature and position of substituents on the lead compounds could be further exploited for the design and development of more potent antiproliferative agents and/or Src kinase inhibitors.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号