首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electron capture dissociation (ECD) efficiency has typically been lower than for other dissociation techniques. Here we characterize experimental factors that limit ECD and seek to improve its efficiency. Efficiency of precursor to product ion conversion was measured for a range of peptide (∼15% efficiency) and protein (∼33% efficiency) ions of differing sizes and charge states. Conversion of precursor ions to products depends on electron irradiation period and maximizes at ∼5–30 ms. The optimal irradiation period scales inversely with charge state. We demonstrate that reflection of electrons through the ICR cell is more efficient and robust than a single pass, because electrons can cool to the optimal energy for capture, which allows for a wide range of initial electron energy. Further, efficient ECD with reflected electrons requires only a short (∼500 μs) irradiation period followed by an appropriate delay for cooling and interaction. Reflection of the electron beam results in electrons trapped in or near the ICR cell and thus requires a brief (∼50 μs) purge for successful mass spectral acquisition. Further electron irradiation of refractory precursor ions did not result in further dissociation. Possibly the ion cloud and electron beam are misaligned radially, or the electron beam diameter may be smaller than that of the ion cloud such that remaining precursor ions do not overlap with the electron beam. Several ion manipulation techniques and use of a large, movable dispenser cathode reduce the possibility that misalignment of the ion and electron beams limits ECD efficiency.  相似文献   

2.
An electron injection system based on an indirectly heated ring-shaped dispenser cathode has been developed and installed in a 7 Tesla Fourier transform ion cyclotron resonance (FTICR) mass spectrometer. This new hardware design allows high-rate electron capture dissociation (ECD) to be carried out by a hollow electron beam coaxial with the ion cyclotron resonance (ICR) trap. Infrared multiphoton dissociation (IRMPD) can also be performed with an on-axis IR-laser beam passing through a hole at the centre of the dispenser cathode. Electron and photon irradiation times of the order of 100 ms are required for efficient ECD and IRMPD, respectively. As ECD and IRMPD generate fragments of different types (mostly c, z and b, y, respectively), complementary structural information that improves the characterization of peptides and proteins by FTICR mass spectrometry can be obtained. The developed technique enables the consecutive or simultaneous use of the ECD and IRMPD methods within a single FTICR experimental sequence and on the same ensemble of trapped ions in multistage tandem (MS/MS/MS or MS(n)) mass spectrometry. Flexible changing between ECD and IRMPD should present advantages for the analysis of protein digests separated by liquid chromatography prior to FTICRMS. Furthermore, ion activation by either electron or laser irradiation prior to, as well as after, dissociation by IRMPD or ECD increases the efficiency of ion fragmentation, including the w-type fragment ion formation, and improves sequencing of peptides with multiple disulfide bridges. The developed instrumental configuration is essential for combined ECD and IRMPD on FTICR mass spectrometers with limited access into the ICR trap.  相似文献   

3.
4.
Successful electron capture dissociation (ECD) Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) applications to peptide and protein structural analysis have been enabled by constant progress in implementation of improved electron injection techniques. The rate of ECD product ion formation has been increased to match the liquid chromatography and capillary electrophoresis timescales, and ECD has been combined with infrared multiphoton dissociation in a single experimental configuration to provide simultaneous irradiation, fast switching between the two techniques, and good spatial overlap between ion, photon, and electron beams. Here we begin by describing advantages and disadvantages of the various existing electron injection techniques for ECD in FT-ICR MS. We next compare multiple-pass and single-pass ECD to provide better understanding of ECD efficiency at low and high negative cathode potentials. We introduce compressed hollow electron beam injection to optimize the overlap of ion, photon, and electron beams in the ICR ion trap. Finally, to overcome significant outgassing during operation of a powerful thermal cathode, we introduce nonthermal electron emitter-based electron injection. We describe the first results obtained with cold cathode ECD, and demonstrate a general way to obtain low-energy electrons in FT-ICR MS by use of multiple-pass ECD.  相似文献   

5.
A novel pulse sequence improving the efficiency for electron capture dissociation (ECD) of an unmodified Fourier transform ion cyclotron resonance (FTICR) mass spectrometer by more than an order of magnitude is presented. Commercially available FTICR instruments are usually equipped with a filament-based electron source producing an electron beam that has a rather small cross section. An ideal overlap between the rotating ion cloud and the electron beam appears to be a prerequisite for a high ECD efficiency. A reduced interception of the ion cloud and the electron beam is probably due to the contribution of the magnetron motion to the trajectory of the ions, resulting in a precession about the z-axis of the instrument. By increasing the kinetic energy and therefore increasing the cyclotron radii of the precursor ions by resonant excitation, the overlap of the rotating ion cloud with the electron beam is improved. By use of this protocol the efficiency of electron capture is substantially increased and consequently the acquisition time of ECD spectra is reduced significantly. The capability of resonant excitation of the precursor ions during the irradiation with electrons is demonstrated for standard peptides. This approach is particularly valuable for analysis and characterization of O-glycosylated peptides. In addition to amino acid sequence information, the attachment site of the labile glycan moiety is determined, and also radical-site-induced fragmentations of the glycosidic bonds are observed.  相似文献   

6.
Electron capture dissociation (ECD) of polypeptide cations was obtained with pencil and hollow electron beams for both sidekick and gas-assisted dynamic ion trapping (GADT) using Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) with an electrostatic ion transfer line. Increasing the number of trapped ions by multiple ICR trap loads using GADT improved the ECD sensitivity in comparison with sidekick ion trapping and ECD efficiency in comparison with single ion trap load by GADT. Furthermore, enhanced sensitivity made it possible to observe ECD in a wide range of electron energies (0-50 eV). The degree, rate and fragmentation characteristics of ECD FTICR-MS were investigated as functions of electron energy, electron irradiation time, electron flux and ion trapping parameters for this broad energy range. The results obtained show that the rate of ECD is higher for more energetic (>1 eV) electrons. Long electron irradiation time with energetic electrons reduces average fragment ion mass and decreases efficiency of formation of c- and z-type ions. The obtained dependencies suggest that the average fragment ion mass and the ECD efficiency are functions of the total fluence of the electron beam (electron energy multiplied by irradiation time). The measured electron energy distributions in low-energy ECD and hot ECD regimes are about 1 eV at full width half maximum in employed experimental configurations.  相似文献   

7.
Ion nanocalorimetry is used to measure the effects of electron kinetic energy in electron capture dissociation (ECD). With ion nanocalorimetry, the internal energy deposited into a hydrated cluster upon activation can be determined from the number of water molecules that evaporate. Varying the heated cathode potential from -1.3 to -2.0 V during ECD has no effect on the average number of water molecules lost from the reduced clusters of either [Ca(H2O)15]2+ or [Ca(H2O)32]2+, even when these data are extrapolated to a cathode potential of zero volts. These results indicate that the initial electron kinetic energy does not go into internal energy in these ions upon ECD. No effects of ion heating from inelastic ion-electron collisions are observed for electron irradiation times up to 200 ms, although some heating occurs for [Ca(H2O)17]2+ at longer irradiation times. In contrast, this effect is negligible for [Ca(H2O)32]2+, a cluster size typically used in nanocalorimetry experiments, indicating that energy transfer from inelastic ion-electron collisions is negligible compared with effects of radiative absorption and emission for these larger clusters. These results have significance toward establishing the accuracy with which electrochemical redox potentials, measured on an absolute basis in the gas phase using ion nanocalorimetry, can be related to relative potentials measured in solution.  相似文献   

8.
The analytical utility of the electron capture dissociation (ECD) technique, developed by McLafferty and co-workers, has substantially improved peptide and protein characterization using Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS). The limitations of the first ECD implementations on commercial instruments were eliminated by the employment of low-energy electron-injection systems based on indirectly heated dispenser cathodes. In particular, the ECD rate and reliability were greatly increased, enabling the combination of ECD/FTICR-MS with on-line liquid separation techniques. Further technique development allowed the combination of two rapid fragmentation techniques, high-rate ECD and infrared multiphoton dissociation (IRMPD), in a single experimental configuration. Simultaneous and consecutive irradiations of trapped ions with electrons and photons extended the possibilities for ion activation/dissociation and led to improved peptide and protein characterization. The application of high-rate ECD/FTICR-MS has demonstrated its power and unique capabilities in top-down sequencing of peptides and proteins, including characterization of post-translational modifications, improved sequencing of peptides with multiple disulfide bridges and secondary fragmentation (w-ion formation). Analysis of peptide mixtures has been accomplished using high-rate ECD in bottom-up mass spectrometry based on mixture separation by liquid chromatography and capillary electrophoresis. This paper summarizes the current impact of high-rate ECD/FTICR-MS for top-down and bottom-up mass spectrometry of peptides and proteins.  相似文献   

9.
Siderophores are high-affinity iron-chelating ligands produced by microorganisms to scavenge vital Fe(3+) from the environment. Thus, siderophores constitute potential therapeutic targets and their structural determination is important for exploiting their therapeutic value. Here, the virulence-associated siderophore petrobactin from Bacillus anthracis was characterized with electron capture dissociation (ECD). Fragmentation of doubly protonated petrobactin was investigated and compared to sustained off-resonance irradiation collision-activated dissociation (SORI CAD) and infrared multiphoton dissociation (IRMPD) of both the singly and doubly protonated species. These experiments demonstrate that ECD provides additional information (complementary bond cleavages) on the structure of petrobactin compared to both SORI CAD and IRMPD. Furthermore, complexes of petrobactin with divalent (Ca(2+), Fe(2+), and Co(2+)) and trivalent (Fe(3+) and Ga(3+)) metal cations were also subjected to SORI CAD and ECD. Again, most structural information was obtained from the ECD spectra. However, significant differences were found in both SORI CAD and ECD of metal complexes, dependent on the nature of the metal ion. Intriguingly, unique behavior, consistent with a recently proposed solution-phase structure, was observed for the highly preferred Fe(3+)-petrobactin complex.  相似文献   

10.
The rules for product ion formation in electron capture dissociation (ECD) mass spectrometry of peptides and proteins remain unclear. Random backbone cleavage probability and the nonspecific nature of ECD toward amino acid sequence have been reported, contrary to preferential channels of fragmentation in slow heating-based tandem mass spectrometry. Here we demonstrate that for amphipathic peptides and proteins, modulation of ECD product ion abundance (PIA) along the sequence is pronounced. Moreover, because of the specific primary (and presumably secondary) structure of amphipathic peptides, PIA in ECD demonstrates a clear and reproducible periodic sequence distribution. On the one hand, the period of ECD PIA corresponds to periodic distribution of spatially separated hydrophobic and hydrophilic domains within the peptide primary sequence. On the other hand, the same period correlates with secondary structure units, such as α-helical turns, known for solution-phase structure. Based on a number of examples, we formulate a set of characteristic features for ECD of amphipathic peptides and proteins: (1) periodic distribution of PIA is observed and is reproducible in a wide range of ECD parameters and on different experimental platforms; (2) local maxima of PIA are not necessarily located near the charged site; (3) ion activation before ECD not only extends product ion sequence coverage but also preserves ion yield modulation; (4) the most efficient cleavage (e.g. global maximum of ECD PIA distribution) can be remote from the charged site; (5) the number and location of PIA maxima correlate with amino acid hydrophobicity maxima generally to within a single amino acid displacement; and (6) preferential cleavage sites follow a selected hydrogen spine in an α-helical peptide segment. Presently proposed novel insights into ECD behavior are important for advancing understanding of the ECD mechanism, particularly the role of peptide sequence on PIA. An improved ECD model could facilitate protein sequencing and improve identification of unknown proteins in proteomics technologies. In structural biology, the periodic/preferential product ion yield in ECD of α-helical structures potentially opens the way toward de novo site-specific secondary structure determination of peptides and proteins in the gas phase and its correlation with solution-phase structure.  相似文献   

11.
The relative abundances of fragment ions in electron capture dissociation (ECD) are often greatly affected by the secondary and tertiary structures of the precursor ion, and have been used to derive the gas-phase conformations of the protein ions. In this study, it is found that resonance ejection of the charge reduced molecular ion during ECD resulted in significant changes in many fragment ion populations. The ratio of the ion peak intensities in the double resonance (DR)-ECD to that in the normal ECD experiment can be used to calculate the lifetime of the radical intermediates from which these fragments are derived. These lifetimes are often in the ms range, a time sufficiently long to facilitate multiple free radical rearrangements. These ratios correlate with the intramolecular noncovalent interactions in the precursor ion, and can be used to deduce information about the gas-phase conformation of peptide ions. DR-ECD experiments can also provide valuable information on ECD mechanisms, such as the importance of secondary electron capture and the origin of c./z ions.  相似文献   

12.
Desfuroylceftiofur (DFC) is a bioactive beta-lactam antibiotic metabolite that has a free thiol group. Previous experiments have shown release of DFC from plasma extracts after addition of a disulfide reducing agent, suggesting that DFC may be bound to plasma and tissue proteins through disulfide bonds. We have reacted DFC with [Arg(8)]-vasopressin (which has one disulfide bond) and bovine insulin (which has three disulfide bonds) and analyzed the reaction products by use of electron capture dissociation Fourier transform ion cyclotron resonance mass spectrometry (ECD FT-ICR MS), which has previously shown preferential cleavage of disulfide bonds. We observe cleavage of DFC from vasopressin and insulin during ECD, suggesting that DFC is indeed bound to peptides and proteins through disulfide bonds. Specifically, we observed dissociative loss of one, as well as two, DFC species during ECD of [vasopressin + 2(DFC-H) + 2H](2+) from a single electron capture event. Loss of two DFCs could arise from either consecutive or simultaneous loss, but in any case implies a gas phase disulfide exchange step. ECD of [insulin + DFC + 4H](4+) shows preferential dissociative loss of DFC. Combined with HPLC, ECD FT-ICR-MS may be an efficient screening method for detection of drug-biomolecule binding.  相似文献   

13.
Gangliosides play important biological roles and structural characterization of both the carbohydrate and the lipid moieties is important. The FT-ICR MS/MS techniques of electron capture dissociation (ECD), electron detachment dissociation (EDD), and infrared multiphoton dissociation (IRMPD) provide extensive fragmentation of the protonated and deprotonated GM1 ganglioside. ECD provides extensive structural information, including identification of both halves of the ceramide and cleavage of the acetyl moiety of the N-acetylated sugars. IRMPD provides similar glycan fragmentation but no cleavage of the acetyl moiety. Cleavage between the fatty acid and the long-chain base of the ceramide moiety is seen in negative-ion IRMPD but not in positive-ion IRMPD of GM1. Furthermore, this extent of fragmentation requires a range of laser powers, whereas all information is available from a single ECD experiment. However, stepwise fragmentation by IRMPD may be used to map the relative labilities for a series of cleavages. EDD provides the alternative of electron-induced fragmentation for negative ions with extensive fragmentation, but suffers from low efficiency as well as complication of data analysis by frequent loss of hydrogen atoms. We also show that analysis of MS/MS data for glycolipids is greatly simplified by classification of product ion masses to specific regions of the ganglioside based solely on mass defect graphical analysis.  相似文献   

14.
The effect of infrared (IR) irradiation on the electron capture dissociation (ECD) fragmentation pattern of peptide ions was investigated. IR heating increases the internal energy of the precursor ion, which often amplifies secondary fragmentation, resulting in the formation of w-type ions as well as other secondary fragments. Improved sequence coverage was observed with IR irradiation before ECD, likely due to the increased conformational heterogeneity upon IR heating, rather than faster breakdown of the initially formed product ion complex, as IR heating after ECD did not have similar effect. Although the ECD fragment ion yield of peptide ions does not typically increase with IR heating, in double resonance (DR) ECD experiments, fragment ion yield may be reduced by fast resonant ejection of the charge reduced molecular species, and becomes dependent on the folding state of the precursor ion. In this work, the fragment ion yield was monitored as a function of the delay between IR irradiation and the DR-ECD event to study the gas-phase folding kinetics of the peptide ions. Furthermore, the degree of intracomplex hydrogen transfer of the ECD fragment ion pair was used to probe the folding state of the precursor ion. Both methods gave similar refolding time constants of approximately 1.5 s(-1), revealing that gaseous peptide ions often refold in less than a second, much faster than their protein counterparts. It was also found from the IR-DR-ECD study that the intramolecular H. transfer rate can be an order of magnitude higher than that of the separation of the long-lived c/z product ion complexes, explaining the common observation of c. and z type ions in ECD experiments.  相似文献   

15.
A novel set-up for Fourier transform ion cyclotron resonance mass spectrometry (FTICR) is reported for simultaneous infrared multiphoton dissociation (IRMPD) and electron-capture dissociation (ECD). An unmodified electron gun ensures complete, on-axis overlap between the electron and the photon beams. The instrumentation, design and implementation of this novel approach are described. In this configuration the IR beam is directed into the ICR cell using a pneumatically actuated mirror inserted into the ion-optical path. Concept validation was made using different combinations of IRMPD and ECD irradiation events on two standard peptides. The ability to perform efficient IRMPD, ECD and especially simultaneous IRMPD and ECD using lower irradiation times is demonstrated. The increase in primary sequence coverage, with the combined IRMPD and ECD set-up, also increases the confidence in peptide and protein assignments.  相似文献   

16.
The design of a novel multipass optical arrangement for use with infrared multiple photon dissociation (IRMPD) in the quadrupole ion trap is presented. This design circumvents previous problems of limited IR laser power, small IR absorption cross sections for many molecules, and the limited ion statistics of trapping and detection of ions for IRMPD in the quadrupole ion trap. In contrast to previous designs that utilized the quadrupole ion store, the quadrupole ion trap was operated in the mass selective instability mode with concurrent resonance ejection. The instrumental design consisted of a modified ring electrode with three spherical concave mirrors mounted on the inner surface of the ring. This modified design allowed for eight laser passes across the radial plane of the ring electrode. IRMPD of protonated bis(2-methoxyethyl)ether (diglyme) was used to characterize the performance of the multipass ring electrode. Two consecutive reactions for the IRMPD of protonated diglyme were observed with a lower energy channel predominant at less than 0.6 J (irradiation times from 1 to 30 ms) and a second channel predominant at energies greater than 0.6 J (irradiation times > 30 ms). Other studies presented include a discussion of the dissociation kinetics of protonated diglyme, the use of a pulsed valve for increased trapping efficiency of parent ion populations, and the effects of laser wavelength and of ion residence time in the radial plane of the ring electrode on photodissociation efficiency.  相似文献   

17.
New low-energy electron injection systems based on indirectly heated dispenser cathodes facilitate electron capture dissociation (ECD) in Fourier transform ion cyclotron resonance (FTICR) mass spectrometry. In this joint report, details are presented of the design and performance of these systems on two commercial FTICR instruments, 9.4 T Bruker BioAPEX in Uppsala and 4.7 T IonSpec Ultima in Odense. New results include obtaining meaningful one-scan MS/MS data for isolated precursor ions with millisecond irradiation times. The ECD rate improvement is not only due to the larger total electron current, but the larger emitting area as well.  相似文献   

18.
We present mechanistic studies aimed at improving the understanding of the product ion formation rules in electron capture dissociation (ECD) of peptides and proteins in Fourier transform ion cyclotron resonance mass spectrometry. In particular, we attempted to quantify the recently reported general correlation of ECD product ion abundance (PIA) with amino acid hydrophobicity. The results obtained on a series of model H-RAAAAXAAAAK-OH peptides confirm a direct correlation of ECD PIA with X amino acid hydrophobicity and polarity. The correlation factor (R) exceeds 0.9 for 12 amino acids (Ile, Val, His, Asn, Asp, Glu, Gln, Ser, Thr, Gly, Cys, and Ala). The deviation of ECD PIA for seven outliers (Pro is not taken into consideration) is explained by their specific radical stabilization properties (Phe, Trp, Tyr, Met, and Leu) and amino acid basicity (Lys, Arg). Phosphorylation of Ser, Thr, and Tyr decreases the efficiency of ECD around phosphorylated residues, as expected. The systematic arrangement of amino acids reported here indicates a possible route toward development of a predictive model for quantitative electron capture/transfer dissociation tandem mass spectrometry, with possible applications in proteomics.  相似文献   

19.
An N-acylated glucagon-like peptide 1 derivative was characterized by Fourier transform ion cyclotron resonance mass spectrometry. Both electron capture dissociation (ECD) and sustained off-resonance irradiation collisionally activated dissociation (SORI-CAD) were employed. While ECD revealed full sequence coverage, site of modification, branching point, structure of the palmitoylated modification, SORI-CAD produced less complete and more ambiguous information attributable to facile losses of the fatty acid group from both parent and fragments. Thus, ECD showed a superior characterization performance over SORI-CAD in analysis of N-acylated polypeptides.  相似文献   

20.
This paper describes our effort in optimizing the experimental parameters for electron capture dissociation (ECD) of peptides in a commercially available Fourier-transform mass spectrometer. Using a built-in electrically heated filament electron gun, it was demonstrated that good quality ECD spectra of peptides (MW < 2500) could be obtained by irradiating the isolated peptide molecule-ions with a short pulse (50 ms) of low-energy (3–6 eV) electrons. In addition, we have also demonstrated that pulsing of inert cooling gas (argon) could further improve the intensity of the ECD-induced fragment ions. Due presumably to the influence of the strong magnetic field on the trajectories of electrons, the distance between the electron gun and the trapped-ion cell (i.e., 108 mm versus 20 mm) was found to have little influence on the efficiency of the ECD process(es). From a systematic study on the impact of the filament heating current, filament bias voltage, and electron irradiation time on the intensities of precursor ions and various fragment ions, it was postulated that subsequent capture of electrons by the fragment ions, i.e., neutralization of the fragment ions, might be a significant event for limiting the intensity of the fragment ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号