首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The design, fabrication, and testing of a 4H-SiC Schottky betavoltaic nuclear battery based on MEMS fabrication technology are presented in this paper. It uses a Schottky diode with an active area of 3.14 mm2 to collect the charge from a 4 mCi/cm2 63Ni source. Some of the critical steps in process integration for fabricating silicon carbide-based Schottky diode were addressed. A prototype of this battery was fabricated and tested under the illumination of the 63Ni source with an activity of 0.12 mCi. An open circuit voltage (V OC) of 0.27 V and a short circuit current density (J SC) of 25.57 nA/cm2 are measured. The maximum output power density (P max) of 4.08 nW/cm2 and power conversion efficiency (η) of 1.01% is obtained. The performance of this battery is expected to be significantly improved by using larger activity and optimizing the design and processing technology of the battery. By achieving comparable performance with previously constructed p–n or p–i–n junction energy conversion structures, the Schottky barrier diode proves to be a feasible approach to achieve practical betavoltaics.  相似文献   

2.
This paper describes the use of aluminum and zinc as anodic materials for a battery employing nickel (II) oxide (NiO) as cathode. Comparison of both materials resulted in the development of a compact, cost effective, and easy to use primary NiO/Al battery employing an alkaline electrolyte. The system features electrodes composed of powder forms of the active materials on modified paper substrates that are contained in a simple multilayer design utilizing thin laminated plastic materials to provide structure and flexibility to the battery as well as a paper separator. Various concentrations of potassium hydroxide (KOH) electrolyte were examined and maximum performance was observed at 6 M KOH. A maximum current density and power density of 1.94 mA/cm2 and 1 mW/cm2, respectively was achieved. This user-friendly device was able to produce a maximum capacity of 2.33 mAh/g when 2 mA/g was applied. This work demonstrates the viability of a paper-based battery featuring powder electrodes as a possible power source for microelectronic devices.  相似文献   

3.
A new type of responsive battery with the fascinating feature of pressure perceptibility has been developed, which can spontaneously, timely and reliably control the power outputs (e.g., current and voltage) in response to pressure changes. The device design is based on the structure of the Zn–air battery, in which graphene‐coated sponge serves as pressure‐sensitive air cathode that endows the whole system with the capability of self‐controlled energy release. The responsive batteries exhibit superior battery performance with high open‐circuit voltage (1.3 V), and competitive areal capacity of 1.25 mAh cm?2. This work presents an important move towards next‐generation intelligent energy storage devices with energy management function.  相似文献   

4.

This paper presents a unique thermal control strategy to improve the ageing of the battery and to maintain the internal temperature of the battery within the optimum limit of 20 °C–40 °C for electric vehicle (EV) applications. The hybrid EV system encompasses photovoltaic (PV) module, high power density device supercapacitor (SC) and high energy density Li-ion battery (LIB) as an energy storage element. The vehicle dynamics encounter frequent voltage fluctuations in the direct current (DC) bus, which ultimately reduces the lifecycle of the battery and also the heat is generated inside the battery when it is connected in parallel to the DC bus. The frequent charging/discharging of LIB is controlled by the unique thermal control strategy of the hybrid EV system. The DC bus voltage is controlled by the SC bi-directional converter (BDC) where, the battery BDC delivers the essential constant current from the main source (PV) to the DC bus. This unique thermal control strategy supports the distribution of power from the PV/LIB/SC hybrid source system to the EV and also improves the battery life cycle. Due to constant charging/discharging of battery the thermal runaway (TR) problem such as leak, smoke, gas venting, rapid disassembly, flames etc., can be eliminated. Decoupling of load power and battery power comprises the growth in the battery lifecycle and to maintain the optimum internal temperature of the LIB by conditional flow of current through hybrid thermal management system (HTMS). To certify the thermal control strategy and to estimate the performance of HTMS, a simulation of a hybrid source system with vehicle dynamics is performed in MATLAB/Simulink. Numerical analysis of the LIB during constant charging/discharging is performed using ANSYS fluent software to validate the temperature effect of HTMS.

  相似文献   

5.
While recent work demonstrates the advantages of weakly solvating solvents in enhancing the cyclability of LMBs, both new designs and design strategies for high performance weakly solvating solvent, especially physicochemical properties, are still lacking. Here, we propose a molecular design to tune the solvating power and physicochemical properties of non-fluorinated ether solvent. The resulting cyclopentylmethyl ether (CPME) have a weak solvating power and wide liquid-phase temperature range. By optimizing the salt concentration, the CE is further promoted to 99.4 %. Besides, the improved electrochemical performance of Li−S battery in CPME-based electrolytes is obtained at −20 °C. The Li||LFP (17.6 mg cm−2) battery with developed electrolyte maintains >90 % of the original capacity over 400 cycles. Our design concept for solvent molecule provides a promising pathway to non-fluorinated electrolytes with weakly solvating power and wide temperature window for high-energy-density LMBs.  相似文献   

6.
The utilization of CO2 in Li-CO2 batteries is attracting extensive attention. However, the poor rechargeability and low applied current density have remained the Achilles’ heel of this energy device. The gel polymer electrolyte (GPE), which is composed of a polymer matrix filled with tetraglyme-based liquid electrolyte, was used to fabricate a rechargeable Li-CO2 battery with a carbon nanotube-based gas electrode. The discharge product of Li2CO3 formed in the GPE-based Li-CO2 battery exhibits a particle-shaped morphology with poor crystallinity, which is different from the contiguous polymer-like and crystalline discharge product in conventional Li-CO2 battery using a liquid electrolyte. Accordingly, the GPE-based battery shows much improved electrochemical performance. The achieved cycle life (60 cycles) and rate capability (maximum applied current density of 500 mA g−1) are much higher than most of previous reports, which points a new way to develop high-performance Li-CO2 batteries.  相似文献   

7.
The utilization of CO2 in Li‐CO2 batteries is attracting extensive attention. However, the poor rechargeability and low applied current density have remained the Achilles’ heel of this energy device. The gel polymer electrolyte (GPE), which is composed of a polymer matrix filled with tetraglyme‐based liquid electrolyte, was used to fabricate a rechargeable Li‐CO2 battery with a carbon nanotube‐based gas electrode. The discharge product of Li2CO3 formed in the GPE‐based Li‐CO2 battery exhibits a particle‐shaped morphology with poor crystallinity, which is different from the contiguous polymer‐like and crystalline discharge product in conventional Li‐CO2 battery using a liquid electrolyte. Accordingly, the GPE‐based battery shows much improved electrochemical performance. The achieved cycle life (60 cycles) and rate capability (maximum applied current density of 500 mA g−1) are much higher than most of previous reports, which points a new way to develop high‐performance Li‐CO2 batteries.  相似文献   

8.
Owing to the high theoretical energy density of metal–air batteries, the aluminum–air battery has been proposed as a promising long‐term power supply for electronics. However, the available energy density from the aluminum–air battery is far from that anticipated and is limited by current electrode materials. Herein we described the creation of a new family of all‐solid‐state fiber‐shaped aluminum–air batteries with a specific capacity of 935 mAh g−1 and an energy density of 1168 Wh kg−1. The synthesis of an electrode composed of cross‐stacked aligned carbon‐nanotube/silver‐nanoparticle sheets contributes to the remarkable electrochemical performance. The fiber shape also provides the aluminum–air batteries with unique advantages; for example, they are flexible and stretchable and can be woven into a variety of textiles for large‐scale applications.  相似文献   

9.
The radiation degradation behavior of commercial low density polyethylene (LDPE) and ethylene–vinylacetate (EVA) cable materials has been investigated. The changes of mechanical properties, thermooxidative stability and density exhibit different radiation stability towards 60Co-gamma radiation and 160 keV electron beam radiation. This difference reflects much higher penetration of the gamma radiation through the polymeric material as a function of sample thickness. These results are discussed with respect to the role of beta radiation during design basis events in a nuclear power plants. In case when total accidental design basis event (DBE) dose (involving about 80% soft beta radiation) is simulated by 60Co-gamma radiation the conservatism is reached.  相似文献   

10.
Owing to the high theoretical energy density of metal–air batteries, the aluminum–air battery has been proposed as a promising long‐term power supply for electronics. However, the available energy density from the aluminum–air battery is far from that anticipated and is limited by current electrode materials. Herein we described the creation of a new family of all‐solid‐state fiber‐shaped aluminum–air batteries with a specific capacity of 935 mAh g?1 and an energy density of 1168 Wh kg?1. The synthesis of an electrode composed of cross‐stacked aligned carbon‐nanotube/silver‐nanoparticle sheets contributes to the remarkable electrochemical performance. The fiber shape also provides the aluminum–air batteries with unique advantages; for example, they are flexible and stretchable and can be woven into a variety of textiles for large‐scale applications.  相似文献   

11.
Electricity generation and chemical productions are both critically important for the sustainable development of modern civilization. Here, a novel bifunctional Zn-organic battery has been established for the concurrent enhanced electricity output and semi-hydrogenations of a series of biomass aldehyderivatives, for the high value-added chemical syntheses. Among them, the typical Zn-furfural (FF) battery equipped with Cu foil-supported edge-enriched Cu nanosheets as cathodic electrocatalyst (Cu NS/Cu foil), provides a maximum current density and power density of 14.6 mA cm−2 and 2.00 mW cm−2, respectively, and in the meantime, produces high value product, furfural alcohol (FAL). The Cu NS/Cu foil catalyst exhibits excellent electrocatalytic performance of ≈93.5 % conversion ratio and ≈93.1 % selectivity for FF semi-hydrogenation at a low potential of -1.1 V vs. Ag/AgCl by using H2O as H source, and shows impressive performance for various biomass aldehyderivatives semi-hydrogenation.  相似文献   

12.
Flexible lithium/sulfur (Li/S) batteries are promising to meet the emerging power demand for flexible electronic devices. The key challenge for a flexible Li/S battery is to design a cathode with excellent electrochemical performance and mechanical flexibility. In this work, a flexible strap-like Li/S battery based on a S@carbon nanotube/Pt@carbon nanotube hybrid film cathode was designed. It delivers a specific capacity of 1145 mAh g−1 at the first cycle and retains a specific capacity of 822 mAh g−1 after 100 cycles. Moreover, the flexible Li/S battery retains stabile specific capacity and Coulombic efficiency even under severe bending conditions. As a demonstration of practical applications, an LED array is shown stably powered by the flexible Li/S battery under flattened and bent states. We also use the strap-like flexible Li/S battery as a real strap for a watch, which at the same time provides a reliable power supply to the watch.  相似文献   

13.
Summary A very promising technique for time resolved local OH measurements is presented which makes use of differential optical absorption spectroscopy (DOAS). The light source is a rapidly tuned, narrowband, frequency-doubled, and power-stabilized dye laser. Due to fast scanning and power stabilization the fluctuations of the atmosphere and the light source are minimized; thus a detection limit better than 10–5 can be achieved for atmospheric long-path absorption measurements. In a first test near Frankfurt a.M. tropospheric OH was observed with concentrations ranging from 8×105 OH cm–3 to 2×106 OH cm–3. The absorption path-length was 800 m and the acquisition time 5 min. In a second generation system the performance of the apparatus was highly improved. A multiple reflection system with a special design for tropospheric open path measurements was constructed. Local OH-measurements in a compartment of only some meters with a well known chemistry are now feasible. Furthermore, a self-test technique was installed for verifying the results and to improve the reliability of tropospheric data. Further application of the experimental device will be its use in monitoring of trace gases absorbing in the ultraviolet, like SO2, and in the visible, such as NO2, to gain a more complex data set for the use with model calculations and to realize a multicomponent device.  相似文献   

14.
The design of hierarchical electrodes comprising multiple components with a high electrical conductivity and a large specific surface area has been recognized as a feasible strategy to remarkably boost pseudocapacitors. Herein, we delineate hexagonal sheets-in-cage shaped nickel–manganese sulfides (Ni-Mn-S) with nanosized open spaces for supercapacitor applications to realize faster redox reactions and a lower charge-transfer resistance with a markedly enhanced specific capacitance. The hybrid was facilely prepared through a two-step hydrothermal method. Benefiting from the synergistic effect between Ni and Mn active sites with the improvement of both ionic and electric conductivity, the resulting Ni-Mn-S hybrid displays a high specific capacitance of 1664 F g−1 at a current density of 1 A g−1 and a capacitance of 785 F g−1 is maintained at a current density of 50 A g−1, revealing an outstanding capacity and rate performance. The asymmetric supercapacitor device assembled with the Ni-Mn-S hexagonal sheets-in-cage as the positive electrode delivers a maximum energy density of 40.4 Wh kg−1 at a power density of 750 W kg−1. Impressively, the cycling retention of the as-fabricated device after 10 000 cycles at a current density of 10 A g−1 reaches 85.5 %. Thus, this hybrid with superior capacitive performance holds great potential as an effective charge-storage material.  相似文献   

15.
In a beta radioluminescence nuclear battery, the beta energy is converted to light with the phosphor material, and then to electricity via photovoltaic cells. A method to optimize the thickness of phosphor layer is established in this study; the match between the luminescence spectrum and the photovoltaic cell is analyzed. The optimal parameters and output performance of the nuclear battery based on a sandwich-structure 147Pm/ZnS:Cu/photovoltaic cell are determined with the MCNP, transport theory of light, and detailed balance limit of efficiency. The battery prototypes are fabricated and tested, and the experimental optimal thickness matches that of the theoretical result well.  相似文献   

16.
A novel iron-hydrogen battery system, whose Fe3+/Fe2+cathode circumvents slowly dynamic oxygen reduction reaction and anode is fed with clean and cordial hydrogen, is systematically investigated. The maximum discharge power density of the iron-hydrogen battery reaches to 96.0 m W/cm2 under the room temperature. The capacity reaches to 17.2 Ah/L and the coulombic and energy efficiency are achieved to99% and 86%, respectively, during the galvanostatic charge-discharge test. M...  相似文献   

17.
The sodium‐ion battery is a promising battery technology owing to its low price and high abundance of sodium. However, the sluggish kinetics of sodium ion makes it hard to achieve high‐rate performance, therefore impairing the power density. In this work, a fiber‐in‐tube Co9S8‐carbon(C)/Co9S8 is designed with fast sodiation kinetics. The experimental and simulation analysis show that the dominating capacitance mechanism for the high Na‐ion storage performance is due to abundant grain boundaries, three exposed layer interfaces, and carbon wiring in the design. As a result, the fiber‐in‐tube hybrid anode shows a high specific capacity of 616 mAh g?1 after 150 cycles at 0.5 A g?1. At 1 A g?1, a capacity of ca. 451 mAh g?1 can be achieved after 500 cycles. More importantly, a high energy density of 779 Wh kg?1 and power density of 7793 W kg?1 can be obtained simultaneously.  相似文献   

18.
A new design for a compact portable lab‐on‐a‐chip instrument based on MCE and dual capacitively coupled contactless conductivity detection (dC4D) is described. The instrument is battery powered with total dimension of 14 × 25 × 8 cm3 (w × l × h), and weighs 1.2 kg. The device consists of a front electrophoresis compartment which has the chip holder and the chip, the associated high‐voltage electrodes for electrophoresis injection and separation and the detector. The detection cell is integrated into the device housing with an exchangeable plug‐and‐play cartridge format. The design of the dC4D cell has been optimized for maximum performance. The cartridge includes the top–bottom excitation and pick up electrodes incorporated into the cell and connected to push‐pull self‐latching pins that are insulated with plastic. The metal frame of the cartridge is grounded completely to eliminate electronic interferences. The cartridge is designed to clamp a thin fluidic chip at the detection point. The cartridges are replaceable whereby different cartridges have different detection electrode configurations to employ according to the sensitivity or resolution needed in the specific analytical application. The second compartment consists of all the electronics, data acquisition card, high‐voltage modules of up to ±5 kV both polarity, and batteries for 10 h of operation. The improved detector performance is illustrated by the electrophoresis analysis of six cations (NH4+, K+, Ca2+, Na+, Mg2+, Li+) with a detection limit of approximately 5 μM and the analysis of the anions (Br?, Cl?, NO2?, NO3?, SO42?, F?) with a detection limit of about 3 μM. Analytical capabilities of the instrument for food and medical applications were evaluated by simultaneous detection of organic and inorganic acids in fruit juice and inorganic cations and anions in rabbit blood samples and human urine samples are also demonstrated.  相似文献   

19.
In this paper, an alkaline nickel oxide hydroxide/zinc (NiOOH/Zn) battery featuring a cellulose matrix separator between electrodes is presented. The metallic electrodes and the paper separator are inserted in a layer‐by‐layer assembly that provides mechanical stability to the system resulting in a lightweight and easy‐to‐use device. The battery was optimized for the amount of NiOOH‐ink used at the cathode (11.1 mg/cm2) and thickness of the paper membrane separating the electrodes (360 μm). The battery was able to function using a small volume (75 μL) of 1.5 M potassium hydroxide (KOH) producing a maximum voltage, current density, and power density of 1.35 ± 0.05 V, 10.62 ± 0.57 mA/cm², and 0.56 ± 0.01 mW/cm², respectively. The system displayed a maximum current of 23.9 mA and a maximum power of 1.26 mW. Moreover, four batteries connected in series were able to power a small flameless candle for approximately 22 min. This work has potential in fulfilling the demands for short‐term and lightweight power supplies.  相似文献   

20.
A new acceptor-donor-acceptor(A-D-A) type small-molecule acceptor NCBDT-4 Cl using chlorinated end groups is reported.This new-designed molecule demonstrates wide and efficient absorption ability in the range of 600–900 nm with a narrow optical bandgap of 1.40 eV. The device based on PBDB-T-SF:NCBDT-4 Cl shows a power conversion efficiency(PCE) of 13.1%without any post-treatment, which represents the best result for all as-cast organic solar cells(OSCs) to date. After device optimizations, the PCE was further enhanced to over 14% with a high short-circuit current density(Jsc) of 22.35 m A cm-2 and a fill-factor(FF) of 74.3%. The improved performance was attributed to the more efficient photo-electron conversion process in the optimal device. To our knowledge, this outstanding efficiency of 14.1% with an energy loss as low as 0.55 eV is among the best results for all single-junction OSCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号