首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The ground state (mu(g)) and excited state (mu(e)) dipole moments of 15 hemicyanine dyes were studied at room temperature. They were estimated from solvatochromic shifts of the absorption and the fluorescence spectra as function of the solvent dielectric constant (varepsilon) and refractive index (n). In this paper we applied the Stokes shift phenomena not only for the determination of the difference in the dipole moment of excited state and ground state, but to determine the value of polarizability alpha as well. The obtained results show that excited state dipole moments of hemicyanine dyes are in the range from 5 to 15 Debye, and the difference between the excited and ground state dipole moments vary from 1 to 7 Debye. The excited and ground state dipole moments difference (mu(e)-mu(g)) obtained for selected dyes are positive. It means that the excited states of the dyes under the study are more polar than the ground state ones. Additionally, the value of both polarizability (alpha) and the Onsager radius (a) of each investigated hemicyanine dye molecule are determined, and the ratio of alpha/a(3) for each dye were calculated, which oscillate from 0.29 to 5.21. The increase in dipole moment has been explained in terms of the nature of excited state and its resonance structure.  相似文献   

2.
The ground state (μ(g)) and the excited state (μ(e)) dipole moments of two coumarin laser dyes, coumarin 440 and 460, were studied at room temperature in various solvents, viz., general solvents, alcohols and liquid crystals at 298 K. In this work, we report dipole moment of laser dyes in different anisotropic (liquid crystal) and isotropic environments for understanding the effects of environments on the molecular dipole moment and comparing them. Ground and excited state dipole moments of coumarin dyes were evaluated by means of solvatochromic shift method. It was observed that dipole moment values of excited states (μ(e)) were higher than the corresponding ground state values (μ(g)) in all media.  相似文献   

3.
Absorption and fluorescence emission spectra of coumarins 6 and 7 were recorded in solvents with different solvent parameters, viz., dielectric constant epsilon and refractive index n. The fluorescence lifetime of these dyes were measured in butanol at higher values of viscosity over temperature. Experimental ground and excited state dipole moments are determined by means of solvatochromic shift method and also the excited state dipole moments are determined in combination with ground state dipole moments. It was determined that dipole moments of the excited state were higher than those of the ground state in both the molecules.  相似文献   

4.
The photophysical properties of newly synthesized bischromophoric solvatochromic stilbazolium dyes, 1,3-bis-[4-(p-N,N-dialkylaminostyryl)pyridinyl]propane dibromides (C1-C9), were studied in a series of solvents and their spectroscopic properties were compared with structurally related, monochromophoric styrylpyridinium dyes (SP1-SP9). The position of the UV-vis absorption spectra maximum of novel dyes is only slightly solvent polarity dependent in contrast to the fluorescence spectra that show pronounced solvatochromic effect demonstrated by a large Stokes shifts. The influence of the solvent on absorption and emission spectra, and the solvatochromic properties observed for both ground and first excited states for all the dyes were used for the evaluation of their excited state dipole moments. The ground state dipole moments of both mono- and bischromophoric dyes were established by applying ab initio calculations. The calculations and measurements unexpectedly show that the bischromophoric dyes are characterized by ground state dipole moments being equal to about half of that characterizing their monomeric equivalents, while the excited state dipole moments of bischromophoric dyes are about 10-25% higher in comparison to their monomeric equivalents.  相似文献   

5.
Spectroscopic properties of a new family of acridinedione dyes are reported. The absorption and fluorescence spectra of the different substituted acridinediones have been recorded in different solvents and the difference in the dipole moment between ground and excited state has been obtained by solvatochromic shift method. The value of the Onsager cavity radius was calculated from the total surface area using software PCMODEL. Fluorescence quantum yield and fluorescence lifetime were determined. Radiative and non-radiative constants have been calculated. The triplet-triplet absorption maxima and triplet lifetime show variation depending on the substitution.  相似文献   

6.
Electro-optical absorption spectra are measured for a series of polyenes, polyynes and cumulenes with centrosymmetric π-chromophores in cyclohexane solution at 298 K. For all molecules the long-axis component of the polarizability tensor is considerably larger in the first dipole-allowed singlet state compared to the ground state. The transition moments are found to be parallel to the long molecular axis. All polyenes and one cumulene show a linear Stark component indicating a long-axis excited state dipole moment. Both the dipole moments and the polarizabilities are corrected within the extended Onsager model for solvent cavity and reaction field effects. It is suggested that symmetry lowering solvent perturbations are the reason for the apparent excited state dipole moments.  相似文献   

7.
Absorption and fluorescence emission of 4 and 7 substituted coumarins viz. C 440, C 490, C 485 and C 311 have been studied in various polar and non-polar organic solvents. These coumarin dyes are substituted with alkyl, amine and fluorine groups at 4- and 7-positions. They give different absorption and emission spectra in different solvents. The study leads to a possible assignment of energy level scheme for such coumarins including the effect on ground state and excited state dipole moments due to substitutions. Excited state dipole moments of these dyes are calculated by solvetochromic data experimentally and theoretically these are calculated by PM 3 method. The dipole moments in excited state, for all molecules investigated here, are higher than the corresponding values in the ground state. The increase in dipole moment has been explained in terms of the nature of excited state and resonance structure.  相似文献   

8.
The absorption and fluorescence spectra of three extensively used laser dyes namely 1,1,4,4-tetraphenyl-1,3-butadiene (TPB), 2-(4'-t-butylphenyl)-5-(4'-biphenylyl)-1-oxa-3,4-diazole (BPBD), 1,4-bis[2-(2-methylphenyl)ethenyl]-benzene (Bis-MSB) have been recorded at room temperature (300K) in solvents of different polarities. The effects of the solvents upon the spectral properties are discussed. The ground-state dipole moments (mu(g)) were determined experimentally by Guggenheim and Higasi method separately and were compared with theoretical values obtained using quantum chemical method. The ground-state dipole moments obtained by using Guggenheim method were then used in the estimation of excited-state dipole moments (mu(e)) by using Lippert's, Bakhshiev's and Kawski-Chamma-Viallet's equations. In all the above three equations the variation of the Stokes shift with the solvent dielectric constant and refractive index was made use of. It was observed that dipole moments of excited state were higher than those of the ground state for all the dyes.  相似文献   

9.
10.
Excited-state dipole moments of some hydroxycoumarins, extensively used as laser dyes, have been determined using the solvatochromic method based on the microscopic solvent polarity parameter EN(T). Agreement between experimental and Austin model 1 (AM 1) calculated dipole moment changes has been found to be close in most of the cases. Our results are expected to be quite reliable in view of the fact that the correlation of the solvatochromic Stokes shifts is superior to that obtained using bulk solvent polarity functions. The dipole moments in the excited state, for all the molecules investigated, are higher than the corresponding values in the ground state. The increase in dipole moment upon excitation has been explained in terms of the nature of emitting state and resonance structure.  相似文献   

11.
The permanent dipole moments of excited molecules can be obtained from the ratio of the solvent shifts of absorption and fluorescence spectra. This ratio method eliminates the uncertain solute cavity radius parameter, as well as the solvent polarity function. In the case of the first excited singlet state of aniline the dipole moment is 5 D (versus 1.57 D in the ground state).  相似文献   

12.
The electronic absorption spectra of eight substituted acetic acids have been measured at room temperature in several solvents. The ground state dipole moments are evaluated experimentally for these molecules. These ground state values are used in conjunction with the spectral results to evaluate their first electronically excited state dipole moments. For all the molecules investigated here the dipole moments in the excited state are higher than their ground state values.  相似文献   

13.
The magnitude of the Stokes shift (frequency shifts in absorption and fluorescence spectra) is observed on changing the solvents and further has been used to calculate experimentally the dipole moments (ground state and excited state) of acriflavine and acridine orange dye molecules. Theoretically, dipole moments are calculated using PM 3 Model. The dipole moments of excited states, for both molecules investigated here, are higher than the corresponding values in the ground states. The increase in the dipole moment has been explained in terms of the nature of the excited state. Acriflavine dye overcomes the non-lasing behaviour of acridine orange due to quaternization of the central nitrogen atom.  相似文献   

14.
Electronic absorption and dual fluorescence spectra of 6,8-diphenylimidazo[1,2-α]pyrazine (68DIP) was recorded in various solvents with different polarity at room temperature. The ground state (μg) and the excited state (μg) dipole moments of 68DIP were estimated from solvatochromic shifts of absorption and fluorescence spectra as a function of the dielectric constant (?) and refractive index (n). The results show that the value of excited state dipole moment in SE: μeSE=2.8772 D and twisted intramolecular charge transfer (TICT) excited equilibrated state dipole moment value of μeLE=2.9744 D was found. The solvent dependent spectral shifts in absorption and fluorescence spectra were analyzed by the polarizability-polarity and Kamlet-Taft parameters.  相似文献   

15.
The spectroscopic properties of series homodimmeric hemicyanine dyes based on (p-N,N-dimethylaminostyryl)benzothiazolium, (p-N,N-dimethylaminostyryl)benzoxazolium, (p-N,N-dimethylaminostyryl)-2,3,3-trimethyl-3H-indolium residues were determined. The absorption and fluorescence spectra of the dyes under study were measured in different polarity solvents at room temperature. On the basis of the solvatochromic behavior the ground state (μg) and excited state (μe) dipole moments of bis-(N,N-dimethylaminostyryl) derivatives were evaluated. The dipole moments (μg and μe) were estimated from solvatochromic shifts of absorption and fluorescence spectra as function of dielectric constant (ε) and refractive index (n) of applied solvents. The absorption and fluorescence spectra are only slightly affected by the solvent polarity. The analysis of solvatochromic behavior of the fluorescence spectra as a function of Δf (ε, n) revealed that the emission occurs from a high polarity excited state. The large dipole moment changes along with the red-shifted fluorescence, as the solvent polarity is increased, demonstrates the formation of an intramolecular charge transfer state (ICT). Six bichromophoric hemicyanine dyes, possessing benzothiazole, benzoxazole or indolinium group linked by 5 or 10 methylene groups were evaluated as fluorescence probes applied for monitoring of the polymerization process. The study on the changes in fluorescence intensity and spectroscopic shift of studied compounds were carried out during photochemically initiated polymerization of 2-ethyl-2-(hydroxymethyl)-propane-1,3-diol triacrylate (TMPTA).  相似文献   

16.
4-(Dimethylamino)-4'-cyano-1,4-diphenylbutadiene (DCB) and 4-(dimethylamino)-2,6-dimethyl-4'-cyano-1,4-diphenylbutadiene (DMDCB) have been characterized spectroscopically. Quantum chemical calculations were performed for comparison. Solvatochromic shifts of the fluorescence were strong and showed a linear dependence on the solvent polarity parameters, whereas shifts in the absorption spectra are very weak only correlate better with the polarizability of the solvents. Excited state dipole moments derived from fluorescence using the Onsager model are very large and similar for both compounds. It is concluded that a strongly allowed and highly dipolar pi, pi* state is the lowest excited state in polar solvents. The strong difference in absorption and fluorescence solvatochromic slopes suggests that the simple Onsager model with a point dipole approximation is not sufficient here.  相似文献   

17.
CNDO/s-CI and VE-PPP methods have been employed to calculate the dipole moments of the bases of nucleic acids in the ground and excited states. A component analysis in terms of μhyb(σ), μch and μπ has been done using the CNDO/s-CI method and these results have been compared with those obtained by the CNDO/2 and IEHT methods. It is observed that while the CNDO/2 and CNDO/s-CI methods give almost the same total dipole moments, component-wise their predictions are very different.Dipole moments of the molecules have also been studied for the lowest excited singlet and triplet π* ← π states. It is observed that the conventional method of calculating dipole moments using changes of only the net charges in the excited state does not give correct results for uracil and thymine, for which experimental results are available. Considering deformed non-planar excited state geometries for these molecules, the observed excited state dipole moments have been explained. A method has been suggested to include the effects of non-planarity while calculating the properties of a complex molecule in a π* ← π excited state. For adenine, guanine and cytosine, the excited state dipole moments are found to be smaller than the ground state values.  相似文献   

18.
The effect of solvents on absorption and fluorescence spectra and dipole moments of coumarin 307 (C307) and coumarin 522B (C522B) have been studied extensively in various solvents, viz., general solvents, alcohols and binary mixtures (acetonitrile-benzene) at 298K. The bathchromic shift observed in absorption and fluorescence spectra of C307 and C522B with increasing solvent polarity indicates that transition involved are pi-->pi*. Solvatochromic correlations were used to obtain the ground and excited state dipole moments. The excited state dipole moments are observed to be greater than their ground state counterparts in all the solvents studied. Further, the experimentally obtained Deltamu were compared with those using normalized polarity terms E(T)(N) from Reichardt equation.  相似文献   

19.
Electronic absorption, excitation and fluorescence spectra of fluorenone and 4-hydroxyfluorenone were recorded at room temperature in several aprotic solvent of varying polarities. The ground (mu(g)) and excited (mu(e)) state dipole moments of both molecules were estimated from solvatochromic shifts of absorption and fluorescence spectra as a function of the dielectric constant (epsilon) and refractive index (n). These experimental results were completed with theoretical results of quantum chemical calculations (AM1). The experimental and theoretical dipole moments in the ground state were compared. It was determined that dipole moments of excited state were higher than those of the ground state for both molecules.  相似文献   

20.
The absorption and fluorescence spectra of N-nonyl acridine orange are determined at room temperature (298 K) in cyclohexane, benzene, carbon tetrachloride, chloroform, chlorobenzene and dichloromethane. The ground state of dipole moment was obtained by impedance measurements using Guggenheim-Debeye's method. The experimental excited state dipole moment of N-nonyl acridine orange was determined using Bakhshiev's and Kawski-Chamma-Viallet's formulae and solvent polarity parameter proposed by Reichardt. These experimental results were completed with theoretical results using quantum chemical methods. The experimental (muexp=10.76 D) and theoretical (mucal=9.9 D) dipole moments in the ground and excited state (muexp*=14.56 D) were compared.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号