首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The design, synthesis, and characterization of binuclear copper(I) complexes and investigations of their dioxygen reactivities are of interest in understanding fundamental aspects of copper/O2 reactivity and in modeling copper enzyme active-site chemistry. In the latter regard, unsymmetrical binuclear systems are of interest. Here, we describe the chemistry of new unsymmetrical binuclear copper complexes, starting with the binucleating ligand UN2-H, possessing a m-xylyl moiety linking a bis[2-(2-pyridyl)ethyl]amine (PY2) tridentate chelator and a 2-[2-(methylamino)ethyl]pyridine bidentate group. Dicopper(I) complexes of UN2-H, [Cu2(UN2-H)]2+ (1), as PF6- and ClO4- salts, are synthesized. These react with O2 (Cu:O2 = 2:1, manometry) resulting in the hydroxylation of the xylyl moiety, producing the phenoxohydroxodicopper(II) complex [Cu2(UN2-O-)(OH-)(CH3CN)]2+ (2). Compound 2(PF6)2 is characterized by X-ray crystallography, which reveals features similar to those of a structure described previously (Karlin, K. D.; et al. J. Am. Chem. Soc. 1984, 106, 2121-2128) for a symmetrical binucleating analogue having two tridentate PY2 moieties; here a CH3CN ligand replaces one pyridylethyl arm. Isotope labeling from a reaction of 1 using 18O2 shows that the ligand UN2-OH, extracted from 2, possesses an 18O-labeled phenol oxygen atom. Thus, the transformation 1 + O2-->2 represents a monooxygenase model system. [CuI2(UN2-OH)(CH3CN)]2+ (3), a new binuclear dicopper(I) complex with an unsymmetrical coordination environment is generated either by reduction of 2 with diphenylhydrazine or in reactions of cuprous salts with UN2-OH. Complex 3 reacts with O2 at -80 degrees C, producing the (mu-1,1-hydroperoxo)dicopper(II) complex [CuII2(UN2-O-)(OOH-)]2+ (4) (lambda max 390 nm (epsilon 4200 M-1 cm-1), formulated on the basis of the stoichiometry of O2 uptake by 3 (Cu:O2 = 2:1, manometry), its reaction with PPh3 giving O=PPh3 (85%), and comparison to previously studied close analogues. Discussions include the relevance and comparison to other copper bioinorganic chemistry.  相似文献   

2.
Employing a binucleating phenol-containing ligand PD'OH, a mu-phenoxo-mu-hydroperoxo dicopper(II) complex [Cu(II)2(PD'O-)(-OOH)(RCN)2](ClO4)2 (1, R = CH3, CH3CH2 or C6H5CH2; lambda(max) = 407 nm; nu(O-O) = 870 cm(-1); J. Am. Chem. Soc. 2005, 127, 15360) is generated by reacting a precursor dicopper(I) complex [Cu(I)2(PD'OH)(CH3CN)2](ClO4)2 (2) with O2 in nitrile solvents at -80 degrees C. Species 1 is unable to oxidize externally added substrates, for instance, PPh3, 2,4-tert-butylphenol, or 9,10-dihydroanthracene. However, upon thermal decay, it hydroxylates copper-bound organocyanides (e.g., benzylcyanide), leading to the corresponding aldehyde while releasing cyanide. This chemistry mimics that known for the copper enzyme dopamine-beta-monooxygenase. The thermal decay of 1 also leads to a product [Cu(II)3(L")2(Cl-)2](PF6)2 (6); its X-ray structure reveals that L" is a Schiff base-containing ligand which apparently derives from both oxidative N-dealkylation and then oxidative dehydrogenation of PD'OH; the chloride presumably derives from the CH2Cl2 solvent. With an excess of PPh3 added to 1, a binuclear Cu(I) complex [Cu(I)2(L')(PPh3)2](ClO4)2 (5) with a cross-linked PD'OH ligand L' has also been identified and crystallographically and chemically characterized. The newly formed C-O bond and an apparent k(H)/k(D) = 2.9 +/- 0.2 isotope effect in the benzylcyanide oxidation reaction suggest a common ligand-based radical forms during compound 1 thermal decay reactions. A di-mu-hydroxide-bridged tetranuclear copper(II) cluster compound [{Cu(II)2(PD'O-)(OH-)}2](ClO4)4 (8) has also been isolated following warming of 1. Its formation is consistent with the generation of [Cu(II)2(PD'O-)(OH-)]2+, with dimerization a reflection of the large Cu...Cu distance and thus the preference for not having a second bridging ligand atom (in addition to the phenolate O) for dicopper(II) ligation within the PD'O- ligand framework.  相似文献   

3.
Intramolecular ligand hydroxylation was observed during the reactions of dioxygen with the dicopper(I) complexes of the ligands L(1)(L(1)=alpha,alpha'-bis[(2-pyridylethyl)amino]-m-xylene) and L(3)(L(3)=alpha, alpha'-bis[N-(2-pyridylethyl)-N-(2-pyridylmethyl)amino]-m-xylene). The dinuclear copper(I) complex [Cu(2)L(3)](ClO(4))(2) and the dicopper(II) complex [Cu(2)(L(1)-O)(OH)(ClO(4))]ClO(4) were characterized by single-crystal X-ray structure analysis. Furthermore, phenolate-bridged complexes were synthesized with the ligand L(2)-OH (structurally characterized [Cu(2)(L(2)-O)Cl(3)] with L(2)=alpha, alpha'-bis[N-methyl-N-(2-pyridylethyl)amino]-m-xylene; synthesized from the reaction between [Cu(2)(L(2)-O)(OH)](ClO(4))(2) and Cl(-)) and Me-L(3)-OH: [Cu(2)(Me-L(3)-O)(mu-X)](ClO(4))(2)xnH(2)O (Me-L(3)-OH = 2,6-bis[N-(2-pyridylethyl)-N-(2-pyridylmethyl)amino]-4-methylphenol and X = C(3)H(3)N(2)(-)(prz), MeCO(2)(-) and N(3)(-)). The magnetochemical characteristics of compounds were determined by temperature-dependent magnetic studies, revealing their antiferromagnetic behaviour [-2J(in cm(-1)) values: -92, -86 and -88; -374].  相似文献   

4.
In methanol, the reaction of Cu(ClO(4))(2).6H(2)O and a sterically constrained piperazine imine phenol ligand (H(2)L), in the presence of NEt(3), affords a novel tetranuclear copper(II) complex of formula [Cu(II)(4)(mu(3)-L)(2)(mu-OH)(2)(H(2)O)(2)](ClO(4))(2).H(2)O (1). The X-ray structure of this complex shows an elongated Cu(4) quasi-tetrahedron coordinated to two hexadentate chair-(e,a)-mu(3)-piperazine bridging ligands. Variable-temperature magnetic studies show an S(t) = 0 spin ground state resulting from antiferromagnetic interactions between Cu(II) ions within the complex.  相似文献   

5.
A new sterically hindered tetradentate tripodal ligand (Me2-etpy) and its labeled analogue having deuterated methylene groups (d4-Me2-etpy) were synthesized, where Me2-etpy is bis(6-methyl-2-pyridylmethyl)(2-pyridylethyl)amine. Copper(I) complexes [Cu(Me2-etpy or d4-Me2-etpy)]+ (1 and 1-d4, respectively) reacted with dioxygen at -80 degrees C in acetone to give bis(mu-oxo)dicopper(III) complexes [Cu2(O)2(Me2-etpy or d4-Me2-etpy)2](2+) (1-oxo and 1-d4-oxo, respectively), the latter of which was crystallographically characterized. Unlike a bis(mu-oxo)dicopper(III) complex with a closely related Me2-tpa ligand having a 2-pyridylmethyl pendant, 1-oxo possessing a 2-pyridylethyl pendant is not fully formed even under 1 atm of O2 at -80 degrees C and is very reactive toward the oxidation of the supporting ligand. Thermal decomposition of 1-oxo gave an N-dealkylated ligand in yield approximately 80% based on a dimer and a corresponding aldehyde. The deuterated ligand d4-Me2-etpy greatly stabilizes the bis(mu-oxo)dicopper(III) complex 1-d4-oxo, indicating that the rate determining step of the N-dealkylation is the C-H bond cleavage from the methylene group. The reversible conversion between 1-d4 and 1-d4-oxo in acetone is dependent on the temperature, and the thermodynamic parameters (DeltaH and DeltaS) of the equilibrium were determined to be -53 +/- 2 kJ mol(-1) and -187 +/- 10 J mol(-1) K(-1), respectively. The effect of the 2-pyridylethyl pendant in comparison with the 2-pyridylmethyl and 6-methyl-2-pyridylmethyl pendants on the physicochemical properties of the copper(I) and bis(mu-oxo)dicopper(III) species is discussed.  相似文献   

6.
A dicopper(I)/phenol-ligand complex in RCN solvents reacts with O2 producing a mu-1,1-hydroperoxo dicopper(II) species. Subsequent thermal transformation results in nitrile hydroxylation and elimination of cyanide, as revealed by the isolation in comparable yields of (i) a cyanide-bridged tetranuclear cluster complex and (ii) benzaldehyde (for R = PhCH2); 18O labeling confirms that the PhC(O)H oxygen atom derives from O2.  相似文献   

7.
The syntheses, structural characterization, and magnetic behavior of the three new polynuclear copper(II) complexes with formulas [Cu(4)(eta(2):mu-CH(3)COO)(2)(mu-OH)(2)(mu-OH(2))(mu-bdmap)(2)](ClO(4))(2).H(2)O (1), [Cu(8)(NCO)(2)(eta(1):mu-NCO)(4)(mu-OH)(2)(mu(3)-OH)(2)(mu-OH(2))(3)(mu-bdmap)(4)](ClO(4))(2)x2H(2)O (2), and [Cu(9)(eta(1):mu-NCO)(8)(mu(3)-OH)(4)(OH(2))(2)(mu-bdmap)(4)](ClO(4))(2).4H(2)O (3), in which bdmapH is 1,3-bis(dimethylamino)-2-propanol, are reported. Tetranuclear complex 1 crystallizes in the triclinic system, space group P, with unit cell parameters a = 12.160(1) A, b = 13.051(1) A, c = 13.235(1) A, alpha = 110.745(1) degrees , beta = 109.683(1) degrees , gamma = 97.014(1), and Z = 2. Octanuclear complex 2 crystallizes in the monoclinic system, space group C2/c, with unit cell parameters a = 26.609(1) A, b = 14.496(1) A, c = 16.652(1) A, beta = 97.814(1) degrees , and Z = 4, and nonanuclear complex 3 crystallizes in the monoclinic system, space group C2/c, with unit cell parameters a = 24.104(1) A, b = 13.542(1) A, c = 24.355(1) A, beta = 109.98(1) degrees , and Z = 4. The magnetic behavior of the three complexes has been checked showing strong antiferromagnetic coupling in all the cases.  相似文献   

8.
A series of complexes with [Fe(II)(2)(mu-OH)(2)] cores has been synthesized with N3 and N4 ligands and structurally characterized to serve as models for nonheme diiron(II) sites in enzymes that bind and activate O(2). These complexes react with O(2) in solution via bimolecular rate-limiting steps that differ in rate by 10(3)-fold, depending on ligand denticity and steric hindrance near the diiron center. Low-temperature trapping of a (mu-oxo)(mu-1,2-peroxo)diiron(III) intermediate after O(2) binding requires sufficient steric hindrance around the diiron center and the loss of a proton (presumably that of a hydroxo bridge or a yet unobserved hydroperoxo intermediate). The relative stability of these and other (mu-1,2-peroxo)diiron(III) intermediates suggests that these species may not be on the direct pathway for dioxygen activation.  相似文献   

9.
[(CuimZnL-2H)(CuimZnL-H)](ClO4)3, the first imidazolate-bridged Cu(II)-Zn(II) complex of a unique single macrocyclic ligand with two flexible hydroxyethyl pendants, L (L = 3,6,9,16,19,22-hexaaza-6,19-bis(2-hydroxyethyl)tricyclo[22.2.2.2(11,14)]triaconta-1,11,13,24,27,29-hexaene) has been obtained, in which the macrocyclic ligand with two hydroxyethyl arms possesses a markedly different conformation compared to its dicopper analogue.  相似文献   

10.
Tetranuclear copper(II) complexes containing alpha-D-glucose-1-phosphate (alpha-D-Glc-1P), [Cu4(mu-OH){mu-(alpha-D-Glc-1P)}2(bpy)4(H2O)2]X3 [X = NO3 (1a), Cl (1b), Br (1c)], and [Cu4(mu-OH){mu-(alpha-D-Glc-1P)}2(phen)4(H2O)2](NO3)3 (2) were prepared by reacting the copper(II) salt with Na2[alpha-D-Glc-1P] in the presence of diimine ancillary ligands, and the structure of 2 was characterized by X-ray crystallography to comprise four {Cu(phen)}2+ fragments connected by the two sugar phosphate dianions in 1,3-O,O' and 1,1-O mu4-bridging fashion as well as a mu-hydroxo anion. The crystal structure of 2 involves two chemically independent complex cations in which the C2 enantiomeric structure for the trapezoidal tetracopper(II) framework is switched according to the orientation of the alpha-D-glucopyranosyl moieties. Temperature-dependent magnetic susceptibility data of 1a indicated that antiferromagnetic spin coupling is operative between the two metal ions joined by the hydroxo bridge (J = -52 cm(-1)) while antiferromagnetic interaction through the Cu-O-Cu sugar phosphate bridges is weak (J = -13 cm(-1)). Complex 1a readily reacted with carboxylic acids to afford the tetranuclear copper(II) complexes, [Cu4{mu-(alpha-D-Glc-1P)}2(mu-CA)2(bpy)4](NO3)2 [CA = CH3COO (3), o-C6H4(COO)(COOH) (4)]. Reactions with m-phenylenediacetic acid [m-C6H4(CH2COOH)2] also gave the discrete tetracopper(II) cationic complex [Cu4{mu-(alpha-D-Glc-1P)}2(mu-m-C6H4(CH2COO)(CH2COOH))2(bpy)4](NO3)2 (5a) as well as the cluster polymer formulated as {[Cu4{mu-(alpha-D-Glc-1P)}2(mu-m-C6H4(CH2COO)2)(bpy)4](NO3)2}n (5b). The tetracopper structure of 1a is converted into a symmetrical rectangular core in complexes 3, 4, and 5b, where the hydroxo bridge is dissociated and, instead, two carboxylate anions bridge another pair of Cu(II) ions in a 1,1-O monodentate fashion. The similar reactions were applied to incorporate sugar acids onto the tetranuclear copper(II) centers. Reactions of 1a with delta-D-gluconolactone, D-glucuronic acid, or D-glucaric acid in dimethylformamide resulted in the formation of discrete tetracopper complexes with sugar acids, [Cu4{mu-(alpha-D-Glc-1P)}2(mu-SA)2(bpy)4](NO3)2 [SA = D-gluconate (6), D-glucuronate (7), D-glucarateH (8a)]. The structures of 6 and 7 were determined by X-ray crystallography to be almost identical with that of 3 with additional chelating coordination of the C-2 hydroxyl group of D-gluconate moieties (6) or the C-5 cyclic O atom of D-glucuronate units (7). Those with D-glucaric acid and D-lactobionic acid afforded chiral one-dimensional polymers, {[Cu4{mu-(alpha-D-Glc-1P)}2(mu-D-glucarate)(bpy)4](NO3)2}n (8b) and {[Cu4{mu-(alpha-D-Glc-1P)}2(mu-D-lactobionate)(bpy)4(H2O)2](NO3)3}n (9), respectively, in which the D-Glc-1P-bridged tetracopper(II) units are connected by sugar acid moieties through the C-1 and C-6 carboxylate O atoms in 8b and the C-1 carboxylate and C-6 alkoxy O atoms of the gluconate chain in 9. When complex 7 containing d-glucuronate moieties was heated in water, the mononuclear copper(II) complex with 2-dihydroxy malonate, [Cu(mu-O2CC(OH)2CO2)(bpy)] (10), and the dicopper(II) complex with oxalate, [Cu2(mu-C2O4)(bpy)2(H2O)2](NO3)2 (11), were obtained as a result of oxidative degradation of the carbohydrates through C-C bond cleavage reactions.  相似文献   

11.
Reactions of CuX2.nH2O with the biscarboxylate ligand XDK (H2XDK = m-xylenediamine bis(Kemp's triacid imide)) in the presence of N-donor auxiliary ligands yielded a series of dicopper(II) complexes, [Cu2(mu-OH)(XDK)(L)2]X (L = N,N,N',N'-tetramethylethylenediamine (tetmen), X = NO3 (1a), Cl (1b); L = N,N,N'-trimethylethylenediamine (tmen), X = NO3 (2a), Cl (2b); L =2,2'-bipyridine (bpy), X = NO3 (3); L = 1,10-phenanthroline (phen), X = NO3 (4); L = 4,4'-dimethyl-2,2'-bipyridine (Me2bpy), X = NO3 (5); L = 4-methyl-1,10-phenanthroline (Mephen), X = NO3 (6)). Complexes 1-6 were characterized by X-ray crystallography (Cu...Cu = 3.1624(6)-3.2910(4) A), and the electrochemical and magnetic properties were also examined. Complexes 3 and 4 readily reacted with diphenyl phosphoric acid (HDPP) or bis(4-nitrophenyl) phosphoric acid (HBNPP) to give [Cu2(mu-phosphate)(XDK)(L)2]NO3 (L = bpy, phosphate = DPP (11); L = phen, phosphate = DPP (12), BNPP (13)), where the phsophate diester bridges the two copper ions in a mu-1,3-O,O' bidentate fashion (Cu...Cu = 4.268(3)-4.315(1) A). Complexes 4 and 6 with phen and Mephen have proven to be good precursors to accommodate a series of sugar monophosphate esters (Sugar-P) onto the biscarboxylate-bridged dicopper centers, yielding [Cu2(mu-Sugar-P)(XDK)(L)2] (Sugar-P = alpha-D-Glc-1-P (23a and b), D-Glc-6-P (24a and b), D-Man-6-P (25a), D-Fru-6-P (26a and b); L = phen (a), Mephen (b)) and [Cu2(mu-Gly-n-P)(XDK)(Mephen)2] (Gly-n-P = glycerol n-phosphate; n = 2 (21), 3 (22)), where Glc, Man, and Fru are glucose, mannose, and fructose, respectively. The structure of [Cu2(mu-MNPP)(XDK)(phen)2(CH3OH)] (20) was characterized as a reference compound (H2MNPP = 4-nitrophenyl phosphoric acid). Complexes 4 and 6 also reacted with d-fructose 1,6-bisphosphate (D-Fru-1,6-P2) to afford the tetranuclear copper(II) complexes formulated as [Cu4(mu-D-Fru-1,6-P2)(XDK)2(L)4] (L = phen (27a), Mephen (27b)). The detailed structure of 27a was determined by X-ray crystallography to involve two different tetranuclear complexes with alpha- and beta-anomers of D-Fru-1,6-P2, [Cu4(mu-alpha-D-Fru-1,6-P2)(XDK)2(phen)4] and [Cu4(mu-beta-D-Fru-1,6-P2)(XDK)2(phen)4], in which the D-Fru-1,6-P2 tetravalent anion bridges the two [Cu2(XDK)(phen)2]2+ units through the C1 and C6 phosphate groups in a mu-1,3-O,O' bidentate fashion (Cu...Cu = 4.042(2)-4.100(2) A). Notably, the structure with alpha-D-Fru-1,6-P2 demonstrated the presence of a strong hydrogen bond between the C2 hydroxyl group and the C1 phosphate oxygen atom, which may support the previously proposed catalytic mechanism in the active site of fructose-1,6-bisphosphatase.  相似文献   

12.
Oxygenation of [Cu(I)(6-PhTPA)](SbF(6)) in acetone at -90 degrees C produces a short-lived Cu(III)(2)(mu-O)(2) intermediate that exhibits an oxygen-isotope-sensitive nu(Cu-O) mode at 599 cm(-1) and an overtone at 1192 cm(-1). The formation of this intermediate is very fast and is second-order in copper(I) complex, implying that two copper-containing species interact in the rate-limiting step or in pre-equilibrium steps prior to the rate determining step. The decay of this intermediate was facile even at -90 degrees C but did not afford any arene hydroxylation product. Interestingly, the effect of introducing a 6-phenyl substituent on the TPA ligand framework differs from that of a 6-methyl substituent, providing access to a bis(mu-oxo)dicopper(III) intermediate in the former and a (mu-1,2-peroxo)dicopper(II) species in the latter.  相似文献   

13.
Two tetradentate ligands 1,2-bis[2-((dimethylamino)methyl)-6-pyridyl]ethane (L1) and 1,2-bis[2-(N-piperidinomethyl)-6-pyridyl]ethane (L2) and a hexadentate ligand 1,2-bis(2-((methyl(pyridylmethyl)amino)methyl)-6-pyridyl)ethane (L3) were prepared as part of a series of new polypyridine ligands possessing a 1,2-bis(2-pyridyl)ethane common moiety. L1 and L2 form mononuclear Cu(II) complexes [Cu(L)(Cl)](ClO4) [L = L1 (1) and L2 (2)], respectively. L3 forms a dinuclear Cu(II) complex [Cu2(L3)((PhO)2PO2)2](ClO4)2 (3) or a hexanuclear Cu(II) complex [Cu6(L3)3((PhO)PO3)4](ClO4)4 (4) in the presence of (PhO)2PO2- monoanion or (PhO)PO3(2-) dianion, respectively. The structures of 1-4 were determined by X-ray analysis. The structures in solution were investigated by means of FAB and CSI MS spectrometers. The structural flexibility of the common 1,2-bis(2-pyridyl)ethane moiety and of the pendant groups allows complexes 1-4 to adapt to the various structures. Each Cu ion in 1 and 2 adopts a square pyramidal geometry with one Cl ion and two pendant groups (L1 and L2) binding in a bis-bidentate chelate mode. There is no steric repulsion between the pendant groups, so that the ligands specifically stabilize the mononuclear structures. L3 binds two Cu(II) ions with two pendant groups in tridentate chelate modes and, with the incorporation of phosphate esters, various dinuclear units are formed in 3 and 4. In 4, a dinuclear unit of [Cu2(L3)]4+ links two dinuclear units of [Cu2(L3)(PhOPO3)2] with four (mu3)-1,3-PhOPO3(2-) bridges. The hydrolytic activity of 2 and a dicopper(II) complex of L3 was examined with tris(p-nitrophenyl) phosphate (TNP) as a substrate.  相似文献   

14.
Reaction of Cu(II) and the aminopolycarboxylate nitrilotripropionic acid (H(3)ntp) in water leads to the formation of [Cu(44)(mu(8)-Br)(2)(mu(3)-OH)(36)(mu-OH)(4)(ntp)(12)Br(8)(OH(2))(28)]Br(2).81H(2)O. The Cu(44) aggregates have a central inorganic core corresponding to [Cu(24)(mu(8)-Br)(2)(mu(3)-OH)(24)(mu-OH)(8)](14+) anchored on two bromide anions, and this is encased in a shell of Cu(II)/ligand units. The aggregates pack into a distorted tetragonal array with a very open structure containing large amounts of water of crystallization. The magnetic properties have been studied and, while complicated by the presence of low-lying excited states, indicate that the individual clusters have nonzero spin ground states.  相似文献   

15.
The syntheses, characterisation and complexation reactions of a series of binucleating Schiff-base calixpyrrole macrocycles are described. The acid-templated [2+2] condensations between meso-disubstituted diformyldipyrromethanes and o-phenylenediamines generate the Schiff-base pyrrolic macrocycles H(4)L(1) to H(4)L(6) upon basic workup. The single-crystal X-ray structures of both H(4)L(3).2 EtOH and H(4)L(6).H2O confirm that [2+2] cyclisation has occurred, with either EtOH or H2O hydrogen-bonded within the macrocyclic cleft. A series of complexation reactions generate the dipalladium [Pd2(L)] (L=L(1) to L(5)), dinickel [Ni2(L(1))] and dicopper [Cu2(L)] (L=L(1) to L(3)) complexes. All of these complexes have been structurally characterised in the solid state and are found to adopt wedged structures that are enforced by the rigidity of the aryl backbone to give a cleft reminiscent of the structures of Pacman porphyrins. The binuclear nickel complexes [Ni2(mu-OMe)2Cl2(HOMe)2(H(4)L(1))] and [Ni2(mu-OH)2Cl2(HOMe)(H(4)L(5))] have also been prepared, although in these cases the solid-state structures show that the macrocyclic ligand remains protonated at the pyrrolic nitrogen atoms, and the Ni(II) cations are therefore co-ordinated by the imine nitrogen atoms only to give an open conformation for the complex. The dicopper complex [Cu2(L(3))] was crystallised in the presence of pyridine to form the adduct [Cu2(py)(L(3))], in which, in the solid state, the pyridine ligand is bound within the binuclear molecular cleft. Reaction between H(4)L(1) and [Mn(thf){N(SiMe(3))2}2] results in clean formation of the dimanganese complex [Mn2(L(1))], which, upon crystallisation, formed the mixed-valent complex [Mn2(mu-OH)(L(1))] in which the hydroxo ligand bridges the metal centres within the molecular cleft.  相似文献   

16.
The multimodal ligand hexakis(2-pyridyloxy)cyclotriphosphazene (L) and its 4-methyl-2-pyridyloxy analogue (MeL) react with Ag(I) to afford {[AgL]+}infinity supramolecular cationic columns via self-assembly, with the anions occupying the intercolumnar channels. In contrast, the reaction of MeL with Cu(I) yields a dimetallic Cu(II) complex containing mu-OH and mu-4-methyl-2-pyridyloxylato bridges.  相似文献   

17.
A copper(I) compound [(L2)Cu(MeCN)2][ClO4] (1) containing a new bidentate N-donor ligand L2, 1-benzyl-[3-(2'-pyridyl)]pyrazole, derived from the condensation of HL1 [HL1 = 3-(2-pyridyl)pyrazole] and benzyl chloride, has been synthesized. Structural analysis reveals that in the copper(I) centre is coordinated by a pyridine and a pyrazole nitrogen from L2 and two MeCN molecules, providing a distorted tetrahedral geometry. Reaction of with dioxygen in N,N'-dimethylformamide (dmf) at 25 degrees C and subsequent workup with MeCO2Et afforded an acetato-/pyrazolato-bridged polymeric copper(II) compound [(mu-L1)Cu(mu-O2CMe)]n (2). Notably, the deprotonated form of HL(1) and MeCO2- have originated from debenzylation of L2 and hydrolysis of MeCO2Et, respectively. The structural analysis of reveals a near-planar {Cu2(mu-L1)2}2+ core unit in which two adjacent Cu(II) ions are bridged by the deprotonated N,N-bidentate pyridylpyrazole units of two L1 and each such {Cu2(mu-L1)2}2+ unit is bridged by MeCO2- in a monodentate bridging mode [Cu...Cu separations (A): 3.9232(4) pyrazolate bridge; 3.3418(4) acetate bridge], providing a polymeric network. Careful oxygenation of in MeCN led to the isolation of a dihydroxo-bridged dicopper(II) compound [{(L2)Cu(mu-OH)(OClO3)}2] (3). Interestingly, complex brings about hydrolysis of MeCO2Et under mild conditions (dmf, ca. 60 degrees C), generating a bis-mu-1,3-acetato-bridged dicopper(II) complex, [{(L2)Cu(dmf)(mu-O2CMe)}2][ClO4]2.dmf.0.5MeCO2H (4). Compounds and have {Cu2(mu-OH)2}2+ [Cu...Cu separation of 2.8474(9) A] and {Cu2(mu-O2CMe)2}2+ cores [Cu...Cu separation: 3.0988(26) and 3.0792(29) A (two independent molecules in the asymmetric unit)] in which each Cu(II) centre is terminally coordinated by L2. A rationale has been provided for the observed debenzylation of L2 and hydrolysis of MeCO(2)Et. The intramolecular magnetic coupling between the Cu(II) (S = 1/2) ions was found to be ferromagnetic (2J = 82 cm(-1)) in the case of , but antiferromagnetic for (2J = -158 cm(-1)) and (2J = -96 cm(-1)). Absorption and EPR spectroscopic properties of the copper(II) compounds have also been investigated.  相似文献   

18.
The work in this paper presents syntheses, characterization, crystal structures, variable-temperature/field magnetic properties, catecholase activity, and electrospray ionization mass spectroscopic (ESI-MS positive) study of five copper(II) complexes of composition [Cu(II)(2)L(μ(1,1)-NO(3))(H(2)O)(NO(3))](NO(3)) (1), [{Cu(II)(2)L(μ-OH)(H(2)O)}(μ-ClO(4))](n)(ClO(4))(n) (2), [{Cu(II)(2)L(NCS)(2)}(μ(1,3)-NCS)](n) (3), [{Cu(II)(2)L(μ(1,1)-N(3))(ClO(4))}(2)(μ(1,3)-N(3))(2)] (4), and [{Cu(II)(2)L(μ-OH)}{Cu(II)(2)L(μ(1,1)-N(3))}{Cu(II)(μ(1,1)-N(3))(4)(dmf)}{Cu(II)(2)(μ(1,1)-N(3))(2)(N(3))(4)}](n)·ndmf (5), derived from a new compartmental ligand 2,6-bis[N-(2-pyridylethyl)formidoyl]-4-ethylphenol, which is the 1:2 condensation product of 4-ethyl-2,6-diformylphenol and 2-(2-aminoethyl)pyridine. The title compounds are either of the following nuclearities/topologies: dinuclear (1), dinuclear-based one-dimensional (2 and 3), tetranuclear (4), and heptanuclear-based one-dimensional (5). The bridging moieties in 1-5 are as follows: μ-phenoxo-μ(1,1)-nitrate (1), μ-phenoxo-μ-hydroxo and μ-perchlorate (2), μ-phenoxo and μ(1,3)-thiocyanate (3), μ-phenoxo-μ(1,1)-azide and μ(1,3)-azide (4), μ-phenoxo-μ-hydroxo, μ-phenoxo-μ(1,1)-azide, and μ(1,1)-azide (5). All the five compounds exhibit overall antiferromagnetic interaction. The J values in 1-4 have been determined (-135 cm(-1) for 1, -298 cm(-1) for 2, -105 cm(-1) for 3, -119.5 cm(-1) for 4). The pairwise interactions in 5 have been evaluated qualitatively to result in S(T) = 3/2 spin ground state, which has been verified by magnetization experiment. Utilizing 3,5-di-tert-butyl catechol (3,5-DTBCH(2)) as the substrate, catecholase activity of all the five complexes have been checked. While 1 and 3 are inactive, complexes 2, 4, and 5 show catecholase activity with turn over numbers 39 h(-1) (for 2), 40 h(-1) (for 4), and 48 h(-1) (for 5) in dmf and 167 h(-1) (for 2) and 215 h(-1) (for 4) in acetonitrile. Conductance of the dmf solution of the complexes has been measured, revealing that bridging moieties and nuclearity have been almost retained in solution. Electrospray ionization mass (ESI-MS positive) spectra of complexes 1, 2, and 4 have been recorded in acetonitrile solutions and the positive ions have been well characterized. ESI-MS positive spectrum of complex 2 in presence of 3,5-DTBCH(2) have also been recorded and, interestingly, a positive ion [Cu(II)(2)L(μ-3,5-DTBC(2-))(3,5-DTBCH(-))Na(I)](+) has been identified.  相似文献   

19.
Hydrogen atom abstraction reactions have been implicated in oxygenation reactions catalyzed by copper monooxygenases such as peptidylglycine alpha-hydroxylating monooxygenase (PHM) and dopamine beta-monooxygenase (DbetaM). We have investigated mononuclear copper(I) and copper(II) complexes with bis[(6-neopentylamino-2-pyridyl)methyl][(2-pyridyl)methyl]amine (BNPA) as functional models for these enzymes. The reaction of [Cu(II)(bnpa)]2+ with H2O2, affords a quasi-stable mononuclear copper(II)-hydroperoxo complex, [Cu(II)(bnpa)(OOH)]+ (4) which is stabilized by hydrophobic interactions and hydrogen bonds in the vicinity of the copper(II) ion. On the other hand, the reaction of [Cu(I)(bnpa)]+ (1) with O2 generates a trans-mu-1,2-peroxo dicopper(II) complex [Cu(II)2(bnpa)2(O2(2-]2+ (2). Interestingly, the same reactions carried out in the presence of exogenous substrates such as TEMPO-H, produce a mononuclear copper(II)-hydroperoxo complex 4. Under these conditions, the H-atom abstraction reaction proceeds via the mononuclear copper(II)-superoxo intermediate [Cu(II)(bnpa)(O2-)]+ (3), as confirmed from indirect observations using a spin trap reagent. Reactions with several substrates having different bond dissociation energies (BDE) indicate that, under our experimental conditions the H-atom abstraction reaction proceeds for substrates with a weak X-H bond (BDE < 72.6 kcal mol(-1)). These investigations indicate that the copper(II)-hydroperoxo complex is a useful tool for elucidation of H-atom abstraction reaction mechanisms for exogenous substrates. The useful functionality of the complex has been achieved via careful control of experimental conditions and the choice of appropriate ligands for the complex.  相似文献   

20.
(mu-Hydroxo or oxo)(mu-1,2-peroxo)diiron(III) complexes having a tetradentate tripodal ligand (L) containing a carboxylate sidearm [Fe2(mu-OH or mu-O)(mu-O2)(L)2]n+ were synthesized as models for peroxo-intermediates of non-heme diiron proteins and characterized by various physicochemical measurements including X-ray analysis, which provide fundamental structural and spectroscopic insights into the peroxodiiron(III) complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号