首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 486 毫秒
1.
We present results on the binding of a variety amines to monoligated oxidative addition complexes of the type L1Pd(Ar)Cl, where L is 2-dicyclohexylphosphino-2',6'-dimethoxybiphenyl (SPhos, 1) or 2-dicyclohexylphosphino-2',4',6'-tri-ispropylbiphenyl (XPhos, 2). The binding of an amine to oxidative addition complexes composed of 1 and 2 is more complex than with smaller ligands as intermediate Pd(II) complexes with bulky biaryl phosphine ligands disfavor amine binding to favorable conformations of oxidative addition complexes. Additionally, thermodynamic and kinetic parameters for reductive elimination from complexes of the type L1Pd(amido)Ph (where amido = EtNH, Me2N, PhNH) are discussed. From this data, we suggest a possible mechanism for (biaryl phosphine) Pd-catalyzed amination reactions that is more intricate than previously thought.  相似文献   

2.
A double Sonogashira-type coupling reaction between aryl bromides and alkynes using a catalytic Pd/XPhos (2-dicyclohexylphosphino-2',4',6'-triisopropylbiphenyl) system was introduced as an efficient method for the synthesis of shape-persistent macrocycles (SPMs). This approach is advantageous in the synthesis of SPMs with a single pyridine unit.  相似文献   

3.
Palladium catalysed C-N bond formation in supercritical carbon dioxide has been accomplished. Carbamic acid formation is avoided in part through the use of an N-silylamine as the coupling partner. Employing a catalyst system of Pd2dba3(1 mol%) and 2-dicyclohexylphosphino-2',4',6'-triisopropyl-1,1'-biphenyl (X-Phos)(2 mol%) enabled the catalytic amination of aryl bromides and chlorides with N-silylanilines to be realised in excellent yield. Extension of the methodology to the N-arylation of N-silyldiarylamines, N-silylazoles and N-silylsulfonamides is reported.  相似文献   

4.
Sphos (2-dicyclohexylphosphino-2′,6′-dimethoxy-1,1′-biphenyl) adduct of cyclopalladated ferrocenylimine (IIe) exhibited highly catalytic activity for the Suzuki cross-coupling reaction of cyclopropylboronic acid with aryl(het) halides with 1 mol % catalyst loading. This process was applied to both of aryl and heteroaryl halides (Br and Cl), and made the various arylcyclopropane and heteroarylcyclopropane to be easily synthesized. A variety of substituents on the aryl halides, such as alkyl, acetyl, benzoyl, ether, formyl, carboxylate, methoxy, nitro and cyano were tolerated.  相似文献   

5.
Two multidentate ligands 2,9-di[6'-(2″-hydroxyl-3″-methoxyphenyl)-n-2',5'-diazahexyl]-1,10-phenanthroline(LA)and 2,9-di(6'-α-phenol-n-2',5'-diazahexyl)-1,10-phenanthroline(LB)were synthesized and fully characterized.Protonation of the ligands and the stability of the complexes of the ligands with divalent metal ions were investigated.The trinuclear metal complexes [Cu(Ⅱ)and Zn(Ⅱ)] of the ligands were studied,as catalysts,for the transphosphorylation of the RNA-model substrate 2-hydroxypropyl-p-nitrophenyl phosphate(HPNP).The second-order rate constants of HPNP-hydrolysis catalyzed by M3L and M3LH-1 were obtained,which indicated that Zn3LBH-1 was the most efficient catalyst among them.The proposed mechanisms included the activation of the substrate via binding to the metal ions and intramolecular nucleophilic attack by the deprotonated C2-hydroxyl of HPNP.  相似文献   

6.
碳酸酐酶模型化合物的合成、表征及其催化性能研究   总被引:1,自引:0,他引:1  
模拟碳酸酐酶的活性中心结构,以三(取代吡唑基)硼氢根[T~p^R^,^R^1]^-为配体,合成了一系列金属配合物[T~p^R^,^R^1]MX[R=Ph,2'-thie(2'-噻吩基),Me;R^1=Ph,2'-thie,Me;M=Co,Ni,Cu,Zn,Cd;X=Cl,NO~3,CH~3COO]共13个,均经元素分析,IR,^1HNMR谱表征。选取其中5个有代表性的配合物,采用Stopped-flow技术,研究了模型物催化CO~2可逆水合反应的动力学,结果表明具备酶促反应动力学的一般特征。详细考察了溶液pH值、模型物的结构(尤其是中心金属离子的电子结构)、浓度对该反应的影响,得出一些重要的结果。计算出该反应有、无催化剂时的活化能,从本质上阐明了反应活化能降低是模型物加速反应的根本原因。  相似文献   

7.
A controllable diastereoselective C(sp2)―C(sp3) Negishi coupling reaction of secondary benzylic zinc reagents with aryl bromides to form medicinally important 2-arylphenylethylamines was demonstrated. In the presence of Pd(OAc)2 and 2-dicyclohexylphosphino-2',6'-dimethoxybiphenyl(S-phos), open-chain(2-amido-1-phenylethyl)zinc reagent bearing a β-NHAc or NHCHO group undergoes coupling reaction to give syn-1-arylphenylethylamine mainly, whereas the zinc reagent bearing a sterically hindered β-amido group, for example NHCOC(CH3)2OTBS undergoes the coupling reaction to yield anti-1-arylphenylethylamines with a configuration inversion. In addition, a working mechanism for the stereoselective Negishi cross-coupling was also proposed.  相似文献   

8.
A series of nickel complexes with β‐ketoamine ligands based on pyrazolone derivatives were synthesized by condensing pyrazolone with aniline, 2‐chloroaniline or naphthylamine and then reacting the produced β‐ketoamine with nickel halide. The solid‐state structures of these three complexes were determined by single‐crystal X‐ray diffraction. The bis(β‐ketoamine)nickel complexes are all air‐stable and can act as highly active catalyst precursors for styrene polymerization with activation of methylaluminoxane under mild reaction conditions. The activity of the catalyst for styrene polymerization is as high as 2.10 × 105 g polymer/mol Ni h. Both steric and electronic effects were found to be important and influential for catalytic activity. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

9.

The study of cross-coupling between hexachlorobenzene and phenylboronic acid comprised five Buchwald ligands, from which 2-dicyclohexylphosphino-2′-(dimethylamino)biphenyl (DavePHOS) provided the best conversion. When excess of phenylboronic acid was used, a mixture of isomeric tri-, tetra- and pentaphenyl-substituted derivatives in the ~10:70:20 ratio was obtained, along with minor amounts of hydrodechlorination products.

  相似文献   

10.
Experimental kinetic studies of the coupling of p-bromobenzaldehyde (1) with butyl acrylate (2) using the dimeric palladacycles complex (4) with chelating nitrogen ligands were carried out together with kinetic modeling using a reaction rate expression based on the mechanism shown in Scheme 2. The oxidative addition product of 1 was found to be the resting state within the catalytic cycle. The formation of dimeric Pd species external to the catalytic cycle helped to rationalize a non-first-order rate dependence on catalyst concentration. Theoretical modeling showed how the relative concentrations of the different intermediate species within the catalystic cycle can influence the observed rate dependence on Pd concentration. It was shown how conventional kinetic studies may give reaction orders in substrates which differ from those which would be observed under practical synthetic conditions. Comparison between phosphine- and nonphosphine-based palladacycles suggests that they follow the same reaction mechanism. The role of water in accelerating the initial formation of the active catalyst species is noted.  相似文献   

11.
A series of 2,6‐bis(imino)pyridines, as common ligands for late transition metal catalyst in ethylene coordination polymerization, were successfully employed in single‐electron transfer‐living radical polymerization (SET‐LRP) of methyl methacrylate (MMA) by using poly(vinylidene fluoride‐co‐chlorotrifluoroethylene) (P(VDF‐co‐CTFE)) as macroinitiator with low concentration of copper catalyst under relative mild‐reaction conditions. Well‐controlled polymerization features were observed under varied reaction conditions including reaction temperature, catalyst concentration, as well as monomer amount in feed. The typical side reactions including the chain‐transfer reaction and dehydrochlorination reaction happened on P(VDF‐co‐CTFE) in atom‐transfer radical polymerization process were avoided in current system. The relationship between the catalytic activity and the chemical structure of 2,6‐bis(imino)pyridine ligands was investigated by comparing both the electrochemical properties of Cu(II)/2,6‐bis(imino)pyridine and the kinetic results of SET‐LRP of MMA catalyzed with different ligands. The substitute groups onto N‐binding sites with proper steric bulk and electron donating are desirable for both high‐propagation reaction rate and C? Cl bonds activation capability on P(VDF‐co‐CTFE). The catalytic activity of Cu(0)/2,6‐bis(imino)pyridines is comparable with Cu(0)/2,2′‐bipyridine under the consistent reaction conditions. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 4378–4388  相似文献   

12.
The synthesis of a family of new Ru complexes containing meridional or facial tridentate ligands with the general formula [Ru(II)(T)(D)(X)](n+) [T = 2,2':6',2' '-terpyridine or tripyrazolylmethane; D = 4,4'-dibenzyl-4,4',5,5'-tetrahydro-2,2'-bioxazole (S,S-box-C) or 2-[((1'S)-1'-(hydroxymethyl)-2'-phenyl)ethylcarboxamide]-(4S)-4-benzyl-4,5-dihydrooxazole (S,S-box-O); X = Cl, H(2)O, MeCN or pyridine] has been described. All complexes have been spectroscopically characterized in solution through (1)H NMR and UV-vis techniques. Furthermore, all of the chloro complexes presented here have also been characterized in the solid state through monocrystal X-ray diffraction analysis. The oxazolinic S,S-box-C ligands undergo a Ru-assisted hydrolysis reaction generating the corresponding amidate anionic oxazolinic ligands S,S-box-O, which are also strongly attached to the metal center and produce a strong sigma-donation effect over the Ru metal center. The redox properties of all complexes have also been studied by means of cyclic voltammetry, strongly reflecting the nature of the ligands; both effects, geometrical (facial vs meridional) and electronic (neutral vs anionic), can be unveiled and rationalized. Finally, the reactivity of the Ru-OH(2) complexes has been tested with regard to the epoxidation of trans-stilbene, and it has been shown that, in this particular case, the reactivity is practically not dependent on the redox potentials of the catalyst but, in sharp contrast, it is strongly dependent on the geometry of the tridentate ligands.  相似文献   

13.
A computational study with the IMOMM(Becke3LYP:MM3) method is carried out on the mechanism of the enantioselective reaction of complex V(O)(L)(OOH), L= bulky tridentate Schiff base, and bis(tert-butyl) disulfide. The reaction with a given L ligand A is first systematically studied: different conformers of the catalyst are optimized, and the large number of associated transition states are systematically searched. The study is then extended to the geometry optimization of selected transition states associated to other ligands B, C, and D, similar to A but differing in the nature of certain substituents R1, R2, R3. The experimental trends in selectivity for catalysts based on ligands A to D are faithfully reproduced by the calculations. Analysis of the computational results leads finally to the formulation of a simple model that can explain one of the most remarkable aspect of this reaction, namely the large effect on enantioselectivity of ligands seemingly far from each other in the catalyst.  相似文献   

14.
Suzuki-Miyaura coupling reactions of aryl and heteroaryl halides with aryl-, heteroaryl- and vinylboronic acids proceed in very good to excellent yield with the use of 2-(2',6'-dimethoxybiphenyl)dicyclohexylphosphine, SPhos (1). This ligand confers unprecedented activity for these processes, allowing reactions to be performed at low catalyst levels, to prepare extremely hindered biaryls and to be carried out, in general, for reactions of aryl chlorides at room temperature. Additionally, structural studies of various 1.Pd complexes are presented along with computational data that help elucidate the efficacy that 1 imparts on Suzuki-Miyaura coupling processes. Moreover, a comparison of the reactions with 1 and with 2-(2',4',6'-triisopropylbiphenyl)diphenylphosphine (2) is presented that is informative in determining the relative importance of ligand bulk and electron-donating ability in the high activity of catalysts derived from ligands of this type. Further, when the aryl bromide becomes too hindered, an interesting C-H bond functionalization-cross-coupling sequence intervenes to provide product in high yield.  相似文献   

15.
The catalytic activities of three N‐methylimidazole‐based phosphine ligands in the Suzuki coupling reaction were tested using PdCl2 as the catalyst. The results showed all three phosphine ligands exhibited excellent activity towards the Suzuki reaction, and the catalytic activity decreased with increasing number of imidazole groups. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
Soluble and rigid terpyridine-based ditopic ligands bearing one to five phenylene/ethynylene modules have been synthesized by way of a stepwise procedure. Each module is attached to the terpyridine unit via an ethynylene fragment and functionalized at the 4-position with an additional ethynylene connector and in the 2,5-positions with two flexible dodecyloxy chains. The synthetic protocol is based on sequential Pd(0)-catalyzed cross-coupling reactions between a terpyridine subunit grafted with the necessary diethynyl/phenyl or ethynylphenyl/bromide appendage. For ditopic ligands displaying an even number of phenyl/ethynylene modules, the final step involves a single cross-coupling reaction between 4'-ethynylene-2,2':6',6' '-terpyridine and the appropriate bromo derivative. In the case of the ligands having an odd number of phenylene/ethynylene fragments, a double cross-coupling reaction between an extended dibromopolyphenylene intermediate and 4'-ethynylene-2,2':6',6' '-terpyridine or 1-(4'-ethynylene-2,2':6',2' '-terpyridine)-4-ethynylene-2,5-didodecyloxy-benzene is required. For ligands I-V, optimal preparative conditions were found with [Pd(0)(PPh(3))(4)] (6 mol %) in n-propylamine at 70 degrees C. Oxidative dimerization of the 1-(4'-ethynylene-2,2':6',2' '-terpyridine)-4-ethynylene-2,5-didodecyloxybenzene derivative in the presence of cupric salts and oxygen gives the corresponding homoditopic ligand II(2)() bearing a central diphenyldiacetylene spacer. Spectroscopic data for the new oligomers are discussed in terms of the extent of pi-electron conjugation. Upon increasing the number of phenylene/ethynylene modules, there is a progressive lowering in energy of absorption and fluorescence transitions.  相似文献   

17.
Summary: Thermogravimetric analysis and stirred tank reactor techiques were used to study the kinetic of polycondensation of bis-hydroxy ethylene terephthalate catalyzed by titanium tetrabutylate. Polycondensation reaction can be modelled best with a second order reaction with respect to hydroxyl end groups concentration. Titanium tetrabutylate is a precursor and needs preactivation for polycondensation catalysis. Kinetic data depends on the mode of operation in thermogravimetric analysis. In nonisothermal mode, the overall activation energy was determined by model-free method and the pre-exponential factor was found to be affected by catalyst concentration. The kinetic study of isothermal reaction in thermogravimetric analysis is complex due to lack of a precise way to reach desired isothermal temperature and high activity of the catalyst. Titanium catalyst shows higher activity and lower selectivity than antimony catalyst but its activity is affected by the nature of ligands.  相似文献   

18.
Ni-Zr-Al基非晶合金催化剂的苯加氢催化性能   总被引:4,自引:0,他引:4  
 利用快速凝固技术制备了Ni23.3Zr6.7Al64Cu2.3Ce3.7非晶态合金,用碱洗抽Al的方法进行活化,制成了Ni-Zr基非晶态合金催化剂(A>50 m2/g), 并考察了其对苯加氢反应的催化性能. 结果发现,这种新型催化材料的比活性高出常规Raney Ni催化剂约375%. 反应动力学分析表明,苯加氢反应级数对氢基本上表现为一级,表观反应活化能约为31.2 kJ/mol, 并推导出苯加氢反应的动力学方程.  相似文献   

19.
Amino acid based thioamides, hydroxamic acids, and hydrazides have been evaluated as ligands in the rhodium‐catalyzed asymmetric transfer hydrogenation of ketones in 2‐propanol. Catalysts containing thioamide ligands derived from L ‐valine were found to selectively generate the product with an R configuration (95 % ee), whereas the corresponding L ‐valine‐based hydroxamic acids or hydrazides facilitated the formation of the (S)alcohols (97 and 91 % ee, respectively). The catalytic reduction was examined by performing a structure–activity correlation investigation with differently functionalized or substituted ligands and the results obtained indicate that the major difference between the thioamide and hydroxamic acid based catalysts is the coordination mode of the ligands. Kinetic experiments were performed and the rate constants for the reduction reactions were determined by using rhodium–arene catalysts derived from amino acid thioamide and hydroxamic acid ligands. The data obtained show that the thioamide‐based catalyst systems demonstrate a pseudo‐first‐order dependence on the substrate, whereas pseudo‐zero‐order dependence was observed for the hydroxamic acid containing catalysts. Furthermore, the kinetic experiments revealed that the rate‐limiting steps of the two catalytic systems differ. From the data obtained in the structure–activity correlation investigation and along with the kinetic investigation it was concluded that the enantioswitchable nature of the catalysts studied originates from different ligand coordination, which affects the rate‐limiting step of the catalytic reduction reaction.  相似文献   

20.
制备了膦配体修饰的Rh/SiO2多相催化剂(L-Rh/SiO2),该催化剂在内烯烃氢甲酰化制备正构醛反应中表现出了高活性和高区域选择性,而且在高压釜反应器中可以通过简单的过滤与产物分离.通过使用不同的单齿和螯合双齿膦配体考察了配体的电子及空间效应对L-Rh/SiO2催化剂催化性能的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号