首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
2.
We study structures of Hochschild 2-cocycles related to endomorphisms and introduce a skew Hochschild 2-cocycle. We moreover define skew Hochschild extensions equipped with skew Hochschild 2-cocycles, and then we examine uniquely clean, Abelian, directly finite, symmetric, and reversible ring properties of skew Hochschild extensions and related ring systems. The results obtained here provide various kinds of examples of such rings. Especially, we give an answer negatively to the question of H. Lin and C. Xi for the corresponding Hochschild extensions of reversible (or semicommutative) rings. Finally, we establish three kinds of Hochschild extensions with Hochschild 2-cocycles and skew Hochschild 2-cocycles.  相似文献   

3.
Let G be a simple graph. Define R(G) to be the graph obtained from G by adding a new vertex e* corresponding to each edge e = (a,b) of G and by joining each new vertex e* to the end vertices a and b of the edge e corresponding to it. In this paper, we prove that the number of matchings of R(G) is completely determined by the degree sequence of vertices of G.  相似文献   

4.
5.
6.
The minimum semidefinite rank (msr) of a graph is defined to be the minimum rank among all positive semidefinite matrices whose zero/nonzero pattern corresponds to that graph. We recall some known facts and present new results, including results concerning the effects of vertex or edge removal from a graph on msr.  相似文献   

7.
For a simple graph G?=?(𝒱, ?) with vertex-set 𝒱?=?{1,?…?,?n}, let 𝒮(G) be the set of all real symmetric n-by-n matrices whose graph is G. We present terminology linking established as well as new results related to the minimum rank problem, with spectral properties in graph theory. The minimum rank mr(G) of G is the smallest possible rank over all matrices in 𝒮(G). The rank spread r v (G) of G at a vertex v, defined as mr(G)???mr(G???v), can take values ??∈?{0,?1,?2}. In general, distinct vertices in a graph may assume any of the three values. For ??=?0 or 1, there exist graphs with uniform r v (G) (equal to the same integer at each vertex v). We show that only for ??=?0, will a single matrix A in 𝒮(G) determine when a graph has uniform rank spread. Moreover, a graph G, with vertices of rank spread zero or one only, is a λ-core graph for a λ-optimal matrix A in 𝒮(G). We also develop sufficient conditions for a vertex of rank spread zero or two and a necessary condition for a vertex of rank spread two.  相似文献   

8.
9.
For a graph G on n vertices and a field F, the minimum rank of G over F, written as mrF(G), is the smallest possible rank over all n×n symmetric matrices over F whose (i,j)th entry (for ) is nonzero whenever ij is an edge in G and is zero otherwise. The maximum nullity of G over F is MF(G)=n-mrF(G). The minimum rank problem of a graph G is to determine mrF(G) (or equivalently, MF(G)). This problem has received considerable attention over the years. In [F. Barioli, W. Barrett, S. Butler, S.M. Cioab?, D. Cvetkovi?, S.M. Fallat, C. Godsil, W. Haemers, L. Hogben, R. Mikkelson, S. Narayan, O. Pryporova, I. Sciriha, W. So, D. Stevanovi?, H. van der Holst, K.V. Meulen, A.W. Wehe, AIM Minimum Rank-Special Graphs Work Group, Zero forcing sets and the minimum rank of graphs, Linear Algebra Appl. 428 (2008) 1628-1648], a new graph parameter Z(G), the zero forcing number, was introduced to bound MF(G) from above. The authors posted an attractive question: What is the class of graphs G for which Z(G)=MF(G) for some field F? This paper focuses on exploring the above question.  相似文献   

10.
11.
We determine the rank of a general real binary form of degree d?=?4 or d?=?5. In the case d?=?5, the possible values of the rank of such general forms are 3, 4, and 5. This is the first reported case, to our knowledge, where more than two typical ranks have been found. We prove that a real binary form of degree d with d real roots has rank?d.  相似文献   

12.
Let A?(??) denote the set of functions belonging to the disc algebra having real Fourier coefficients. We show that A?(??) has Bass and topological stable ranks equal to 2, which settles the conjecture made by Brett Wick in [18]. We also give a necessary and sufficient condition for reducibility in some real algebras of functions on symmetric domains with holes, which is a generalization of the main theorem in [18]. A sufficient topological condition on the symmetric open set ?? is given for the corresponding real algebra A?(??) to have Bass stable rank equal to 1 (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
14.
We employ a result of Moshe Rosenfeld to show that the minimum semidefinite rank of a triangle-free graph with no isolated vertex must be at least half the number of its vertices. We define a Rosenfeld graph to be such a graph that achieves equality in this bound, and we explore the structure of these special graphs. Their structure turns out to be intimately connected with the zero-nonzero patterns of the unitary matrices. Finally, we suggest an exploration of the connection between the girth of a graph and its minimum semidefinite rank, and provide a conjecture in this direction.  相似文献   

15.
16.
A homomorphism from an oriented graph G to an oriented graph H is a mapping from the set of vertices of G to the set of vertices of H such that is an arc in H whenever is an arc in G. The oriented chromatic index of an oriented graph G is the minimum number of vertices in an oriented graph H such that there exists a homomorphism from the line digraph LD(G) of G to H (the line digraph LD(G) of G is given by V(LD(G)) = A(G) and whenever and ). We give upper bounds for the oriented chromatic index of graphs with bounded acyclic chromatic number, of planar graphs and of graphs with bounded degree. We also consider lower and upper bounds of oriented chromatic number in terms of oriented chromatic index. We finally prove that the problem of deciding whether an oriented graph has oriented chromatic index at most k is polynomial time solvable if k ≤ 3 and is NP‐complete if k ≥ 4. © 2007 Wiley Periodicals, Inc. J Graph Theory 57: 313–332, 2008  相似文献   

17.
18.
19.
20.
图G是一个简单无向图,G~σ是图G在定向σ下的定向图,G被称作G~σ的基础图.定向图G~σ的斜Randi6矩阵是实对称n×n矩阵R_s(G~σ)=[(r_s)_(ij)].如果(v_i,v_j)是G~σ的弧,那么(r_s)_(ij)=(d_id_j)~(-1/2)且(r_s)_(ji)=(d_id_j)~(-1/2),否则(r_s)_(ij)=(r_s)_(ji)=0.定向图G~σ的斜Randi能量RE_s(G~σ)是指R_s(G~σ)的所有特征值的绝对值的和.首先刻画了定向图G~σ的斜Randi矩阵R_s(G~σ)的特征多项式的系数.然后给出了定向图G~σ的斜Randi能量RE_s(G~σ)的积分表达式.之后给出了RE_s(G~σ)的上界.最后计算了定向圈的斜Randi能量RE_s(G~σ).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号