首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Robust design optimization (RDO) problems can generally be formulated by incorporating uncertainty into the corresponding deterministic problems. In this context, a careful formulation of deterministic equality constraints into the robust domain is necessary to avoid infeasible designs under uncertain conditions. The challenge of formulating equality constraints is compounded in multiobjective RDO problems. Modeling the tradeoffs between the mean of the performance and the variation of the performance for each design objective in a multiobjective RDO problem is itself a complex task. A judicious formulation of equality constraints adds to this complexity because additional tradeoffs are introduced between constraint satisfaction under uncertainty and multiobjective performance. Equality constraints under uncertainty in multiobjective problems can therefore pose a complicated decision making problem. In this paper, we provide a new problem formulation that can be used as an effective multiobjective decision making tool, with emphasis on equality constraints. We present two numerical examples to illustrate our theoretical developments.  相似文献   

2.
A multiobjective binary integer programming model for R&D project portfolio selection with competing objectives is developed when problem coefficients in both objective functions and constraints are uncertain. Robust optimization is used in dealing with uncertainty while an interactive procedure is used in making tradeoffs among the multiple objectives. Robust nondominated solutions are generated by solving the linearized counterpart of the robust augmented weighted Tchebycheff programs. A decision maker’s most preferred solution is identified in the interactive robust weighted Tchebycheff procedure by progressively eliciting and incorporating the decision maker’s preference information into the solution process. An example is presented to illustrate the solution approach and performance. The developed approach can also be applied to general multiobjective mixed integer programming problems.  相似文献   

3.
In this paper, we propose two kinds of robustness concepts by virtue of the scalarization techniques (Benson’s method and elastic constraint method) in multiobjective optimization, which can be characterized as special cases of a general non-linear scalarizing approach. Moreover, we introduce both constrained and unconstrained multiobjective optimization problems and discuss their relations to scalar robust optimization problems. Particularly, optimal solutions of scalar robust optimization problems are weakly efficient solutions for the unconstrained multiobjective optimization problem, and these solutions are efficient under uniqueness assumptions. Two examples are employed to illustrate those results. Finally, the connections between robustness concepts and risk measures in investment decision problems are also revealed.  相似文献   

4.
Optimization models are increasingly being used in agricultural planning. However, the inherent uncertainties present in agriculture make it difficult. In recent years, robust optimization has emerged as a methodology that allows dealing with uncertainty in optimization models, even when probabilistic knowledge of the phenomenon is incomplete. In this paper, we consider a wine grape harvesting scheduling optimization problem subject to several uncertainties, such as the actual productivity that can be achieved when harvesting. We study how effective robust optimization is solving this problem in practice. We develop alternative robust models and show results for some test problems obtained from actual wine industry problems.  相似文献   

5.
Motivated by Markowitz portfolio optimization problems under uncertainty in the problem data, we consider general convex parametric multiobjective optimization problems under data uncertainty. For the first time, this uncertainty is treated by a robust multiobjective formulation in the gist of Ben-Tal and Nemirovski. For this novel formulation, we investigate its relationship to the original multiobjective formulation as well as to its scalarizations. Further, we provide a characterization of the location of the robust Pareto frontier with respect to the corresponding original Pareto frontier and show that standard techniques from multiobjective optimization can be employed to characterize this robust efficient frontier. We illustrate our results based on a standard mean–variance problem.  相似文献   

6.
Vector Ordinal Optimization   总被引:2,自引:0,他引:2  
Ordinal optimization is a tool to reduce the computational burden in simulation-based optimization problems. So far, the major effort in this field focuses on single-objective optimization. In this paper, we extend this to multiobjective optimization and develop vector ordinal optimization, which is different from the one introduced in Ref. 1. Alignment probability and ordered performance curve (OPC) are redefined for multiobjective optimization. Our results lead to quantifiable subset selection sizes in the multiobjective case, which supplies guidance in solving practical problems, as demonstrated by the examples in this paper.This paper was supported in part by Army Contract DAAD19-01-1-0610, AFOSR Contract F49620-01-1-0288, and a contract with United Technology Research Center (UTRC). The first author received additional funding from NSF of China Grants 60074012 and 60274011, Ministry of Education (China), and a Tsinghua University (Beijing, China) Fundamental Research Funding Grant, and the NCET program of China.The authors are grateful to and benefited from two rounds of reviews from three anonymous referees.  相似文献   

7.
This paper presents a general-purpose software framework dedicated to the design and the implementation of evolutionary multiobjective optimization techniques: ParadisEO-MOEO. A concise overview of evolutionary algorithms for multiobjective optimization is given. A substantial number of methods has been proposed so far, and an attempt of conceptually unifying existing approaches is presented here. Based on a fine-grained decomposition and following the main issues of fitness assignment, diversity preservation and elitism, a conceptual model is proposed and is validated by regarding a number of state-of-the-art algorithms as simple variants of the same structure. This model is then incorporated into the ParadisEO-MOEO software framework. This framework has proven its validity and high flexibility by enabling the resolution of many academic, real-world and hard multiobjective optimization problems.  相似文献   

8.
A new multiobjective simulated annealing algorithm for continuous optimization problems is presented. The algorithm has an adaptive cooling schedule and uses a population of fitness functions to accurately generate the Pareto front. Whenever an improvement with a fitness function is encountered, the trial point is accepted, and the temperature parameters associated with the improving fitness functions are cooled. Beside well known linear fitness functions, special elliptic and ellipsoidal fitness functions, suitable for the generation on non-convex fronts, are presented. The effectiveness of the algorithm is shown through five test problems. The parametric study presented shows that more fitness functions as well as more iteration gives more non-dominated points closer to the actual front. The study also compares the linear and elliptic fitness functions. The success of the algorithm is also demonstrated by comparing the quality metrics obtained to those obtained for a well-known evolutionary multiobjective algorithm.  相似文献   

9.
Recently, a general-purpose local-search heuristic method called extremal optimization (EO) has been successfully applied to some NP-hard combinatorial optimization problems. This paper presents an investigation on EO with its application in numerical multiobjective optimization and proposes a new novel elitist (1 + λ) multiobjective algorithm, called multiobjective extremal optimization (MOEO). In order to extend EO to solve the multiobjective optimization problems, the Pareto dominance strategy is introduced to the fitness assignment of the proposed approach. We also present a new hybrid mutation operator that enhances the exploratory capabilities of our algorithm. The proposed approach is validated using five popular benchmark functions. The simulation results indicate that the proposed approach is highly competitive with the state-of-the-art multiobjective evolutionary algorithms. Thus MOEO can be considered a good alternative to solve numerical multiobjective optimization problems.  相似文献   

10.
多目标优化问题Proximal真有效解的最优性条件   总被引:1,自引:1,他引:0  
在广义凸性假设下,给出了集合proximal真有效点的线性标量化,并在此基础上证明了它与Benson真有效点和Borwein真有效点的等价性.将这些结果应用到多目标优化问题上,得到proximal真有效解的最优性条件.最后,利用proximal次微分,得到了proximal真有效解的模糊型最优性条件.  相似文献   

11.
The concept of a K-gradient, introduced in Ref. 1 in order to generalize the concept of a derived convex cone defined by Hestenes, is extended to weak multiobjective optimization problems including not only a state variable, but also a control variable. The new concept is employed to state multiplier rules for the local solutions of such dynamic multiobjective optimization problems. An application of these multiplier rules to the local solutions of an abstract multiobjective optimal control problem yields general necessary optimality conditions that can be used to derive concrete maximum principles for multiobjective optimal control problems, e.g., problems described by integral equations with additional functional constraints.  相似文献   

12.
An interval-parameter fuzzy linear programming method (IFMOLP) is proposed in this study for multiple objective decision-making under uncertainty. As a hybrid of interval-parameter and fuzzy methodologies, the IFMOLP incorporates interval-parameter linear programming and fuzzy multiobjective programming approaches to form an integrated optimization system. The method inherits advantages of interval-parameter programming, and allows uncertainties and decision-makers’ aspirations to be effectively communicated into its programming processes and resulting solutions. Membership functions for both objectives and constraints are formulated to reflect uncertainties in different system components and their interrelationships. An interactive solution procedure has been developed based on solution approaches of the interval-parameter and fuzzy programming techniques, plus necessary measures for handling the multiobjective feature. A didactic example is provided in the paper to illustrate the detailed solution process. Possibilities of further improvements by seeking Pareto optimum and incorporating flexible preference within constraints are also discussed.  相似文献   

13.
The robust optimization methodology is known as a popular method dealing with optimization problems with uncertain data and hard constraints. This methodology has been applied so far to various convex conic optimization problems where only their inequality constraints are subject to uncertainty. In this paper, the robust optimization methodology is applied to the general nonlinear programming (NLP) problem involving both uncertain inequality and equality constraints. The uncertainty set is defined by conic representable sets, the proposed uncertainty set is general enough to include many uncertainty sets, which have been used in literature, as special cases. The robust counterpart (RC) of the general NLP problem is approximated under this uncertainty set. It is shown that the resulting approximate RC of the general NLP problem is valid in a small neighborhood of the nominal value. Furthermore a rather general class of programming problems is posed that the robust counterparts of its problems can be derived exactly under the proposed uncertainty set. Our results show the applicability of robust optimization to a wider area of real applications and theoretical problems with more general uncertainty sets than those considered so far. The resulting robust counterparts which are traditional optimization problems make it possible to use existing algorithms of mathematical optimization to solve more complicated and general robust optimization problems.  相似文献   

14.
An approach to solving optimization problems with fuzzy coefficients is described. It consists in formulating and analyzing one and the same problem within the framework of mutually related models by constructing equivalent analogs with fuzzy coefficients in objective functions alone. Since the approach is applied within the context of fuzzy discrete optimization problems, modified algorithms of discrete optimization are discussed. These algorithms are based on a combination of formal and heuristic procedures and allow one to obtain quasi-optimal solutions after a small number of steps, thus overcoming the computational complexity posed by the NP-completeness of discrete optimization problems. The subsequent contraction of the decision uncertainty regions is associated with reduction of the problem to multiobjective decision making in a fuzzy environment using techniques based on fuzzy preference relations. The results of the paper are of a universal character and are already being used to solve practical problems in several fields.  相似文献   

15.
This paper presents a multiobjective search algorithm with subdivision technique (MOSAST) for the global solution of multiobjective constrained optimization problems with possibly noncontinuous objective or constraint functions. This method is based on a random search method and a new version of the Graef-Younes algorithm and it uses a subdivision technique. Numerical results are given for bicriterial test problems.  相似文献   

16.
In this paper we review and propose different adaptations of the GRASP metaheuristic to solve multiobjective combinatorial optimization problems. In particular, we describe several alternatives to specialize the construction and improvement components of GRASP when two or more objectives are considered. GRASP has been successfully coupled with Path Relinking for single-objective optimization. Moreover, we propose different hybridizations of GRASP and Path Relinking for multiobjective optimization. We apply the proposed GRASP with Path Relinking variants to two combinatorial optimization problems, the biobjective orienteering problem and the biobjective path dissimilarity problem. We report on empirical tests with 70 instances and 30 algorithms, that show that the proposed heuristics are competitive with the state-of-the-art methods for these problems.  相似文献   

17.
A new approach to multiobjective optimization is presented which is made possible due to our ability to obtain full global optimal solutions. A distinctive feature of this approach is that a vector cost function is nonscalarized. The method provides a means for the solution of vector optimization problems with nonreconcilable objectives.This work was supported by the Natural Sciences and Engineering Research Council of Canada, Grant No. A3492.  相似文献   

18.
Robust optimization addressing decision making under uncertainty has been very well developed for problems with a single objective function and applied to areas of human activity such as portfolio selection, investment decisions, signal processing, and telecommunication-network planning. As these decision problems typically have several decisions or goals, we extend robust single objective optimization to the multiobjective case. The column-wise uncertainty model can be carried over to the multiobjective case without any additional assumptions. For the row-wise uncertainty model, we show under additional assumptions that robust efficient solutions are efficient to specific instance problems and can be found as the efficient solutions of another deterministic problem. Being motivated by the fact that Internet traffic must be maintained in a reliable yet affordable manner in situations of complex and dynamic usage, we apply the row-wise model to an intradomain multiobjective routing problem with polyhedral traffic uncertainty. We consider traditional objective functions corresponding to link utilizations and implement the biobjective case using the parametric simplex algorithm to compute robust efficient routings. We also present computational results for the Abilene network and analyze their meaning in the context of the application.  相似文献   

19.
求解群体多目标最优化问题的联合有效数法   总被引:2,自引:2,他引:0  
群体多目标最优化是群体决策和多目标最优化相交叉的一个边缘研究领域,其主要特点是对由多个决策者提供的具多个目标的最优化问题,进行定量和定性相结合的方案选优或决策排序.因此,它的理论和方法在现代社会的重大决策中有着广阔的应用前景.  相似文献   

20.
This paper presents a multiobjective model for crop planning in agriculture. The approach is based on portfolio theory. The model takes into account weather risks, market risks and environmental risks. Input data include historical land productivity data for various crops, soil types and yield response to fertilizer/pesticide application. Several environmental levels for the application of fertilizers/pesticides, and the monetary penalties for overcoming these levels, are also considered. Starting from the multiobjective model we formulate several single objective optimization problems: the minimum environmental risk problem, the maximum expected return problem and the minimum financial risk problem. We prove that the minimum environmental risk problem is equivalent to a mixed integer problem with a linear objective function. Two numerical results for the minimum environmental risk problem are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号