首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper we consider the linear symmetric cone programming (SCP). At a Karush-Kuhn-Tucker (KKT) point of SCP, we present the important conditions equivalent to the nonsingularity of Clarke’s generalized Jacobian of the KKT nonsmooth system, such as primal and dual constraint nondegeneracy, the strong regularity, and the nonsingularity of the B-subdifferential of the KKT system. This affirmatively answers an open question by Chan and Sun (SIAM J. Optim. 19:370–396, 2008).  相似文献   

2.
This paper is devoted to the study of optimal solutions of symmetric cone programs by means of the asymptotic behavior of central paths with respect to a broad class of barrier functions. This class is, for instance, larger than that typically found in the literature for semidefinite positive programming. In this general framework, we prove the existence and the convergence of primal, dual and primal–dual central paths. We are then able to establish concrete characterizations of the limit points of these central paths for specific subclasses. Indeed, for the class of barrier functions defined at the origin, we prove that the limit point of a primal central path minimizes the corresponding barrier function over the solution set of the studied symmetric cone program. In addition, we show that the limit points of the primal and dual central paths lie in the relative interior of the primal and dual solution sets for the case of the logarithm and modified logarithm barriers.  相似文献   

3.
Lingchen Kong 《Positivity》2012,16(2):297-319
This paper deals with symmetric cone programming (SCP), which includes the linear programming (LP), the second-order cone programming (SOCP), the semidefinite programming (SDP) as special cases. Based on the Chen?CMangasarian smoothing function of the projection operator onto symmetric cones, we establish a smoothing Newton method for SCP. Global and quadratic convergence of the proposed algorithm is established under the primal and dual constraint nondegeneracies, but without the strict complementarity. Moreover, we show the equivalence at a Karush?CKuhn?CTucker (KKT) point among the primal and dual constraint nondegeneracies, the nonsingularity of the B-subdifferential of the smoothing counterpart of the KKT system, and the nonsingularity of the corresponding Clarke??s generalized Jacobian.  相似文献   

4.
Suppose x? and s? lie in the interiors of a cone K and its dual K *, respectively. We seek dual ellipsoidal norms such that the product of the radii of the largest inscribed balls centered at x? and s? and inscribed in K and K *, respectively, is maximized. Here the balls are defined using the two dual norms. When the cones are symmetric, that is self-dual and homogeneous, the solution arises directly from the Nesterov–Todd primal–dual scaling. This shows a desirable geometric property of this scaling in symmetric cone programming, namely that it induces primal/dual norms that maximize the product of the distances to the boundaries of the cones.  相似文献   

5.
In this paper, we study iteration complexities of Mizuno-Todd-Ye predictor-corrector (MTY-PC) algorithms in SDP and symmetric cone programs by way of curvature integrals. The curvature integral is defined along the central path, reflecting the geometric structure of the central path. Integrating curvature along the central path, we obtain a precise estimate of the number of iterations to solve the problem. It has been shown for LP that the number of iterations is asymptotically precisely estimated with the integral divided by $\sqrt{\beta}$ , where β is the opening parameter of the neighborhood of the central path in MTY-PC algorithms. Furthermore, this estimate agrees quite well with the observed number of iterations of the algorithm even when β is close to one and when applied to solve large LP instances from NETLIB. The purpose of this paper is to develop direct extensions of these two results to SDP and symmetric cone programs. More specifically, we give concrete formulas for curvature integrals in SDP and symmetric cone programs and give asymptotic estimates for iteration complexities. Through numerical experiments with large SDP instances from SDPLIB, we demonstrate that the number of iterations is explained quite well with the integral even for a large step size which is enough to solve practical large problems.  相似文献   

6.
Abstract

We present an interior proximal method for solving constrained nonconvex optimization problems where the objective function is given by the difference of two convex function (DC function). To this end, we consider a linearized proximal method with a proximal distance as regularization. Convergence analysis of particular choices of the proximal distance as second-order homogeneous proximal distances and Bregman distances are considered. Finally, some academic numerical results are presented for a constrained DC problem and generalized Fermat–Weber location problems.  相似文献   

7.
In this paper, we mainly study metric subregularity for a convex constraint system defined by a convex set-valued mapping and a convex constraint subset. The main work is to provide several primal equivalent conditions for metric subregularity by contingent cone and graphical derivative. Further it is proved that these primal equivalent conditions can characterize strong basic constraint qualification of convex constraint system given by Zheng and Ng (SIAM J Optim 18:437–460, 2007).  相似文献   

8.
In this paper, we present two primal–dual interior-point algorithms for symmetric cone optimization problems. The algorithms produce a sequence of iterates in the wide neighborhood \(\mathcal {N}(\tau ,\,\beta )\) of the central path. The convergence is shown for a commutative class of search directions, which includes the Nesterov–Todd direction and the xs and sx directions. We derive that these two path-following algorithms have
$$\begin{aligned} \text{ O }\left( \sqrt{r\text{ cond }(G)}\log \varepsilon ^{-1}\right) , \text{ O }\left( \sqrt{r}\left( \text{ cond }(G)\right) ^{1/4}\log \varepsilon ^{-1}\right) \end{aligned}$$
iteration complexity bounds, respectively. The obtained complexity bounds are the best result in regard to the iteration complexity bound in the context of the path-following methods for symmetric cone optimization. Numerical results show that the algorithms are efficient for this kind of problems.
  相似文献   

9.
ABSTRACT

In this paper, we study a constrained utility maximization problem following the convex duality approach. After formulating the primal and dual problems, we construct the necessary and sufficient conditions for both the primal and dual problems in terms of forward and backward stochastic differential equations (FBSDEs) plus some additional conditions. Such formulation then allows us to explicitly characterize the primal optimal control as a function of the adjoint process coming from the dual FBSDEs in a dynamic fashion and vice versa. We also find that the optimal wealth process coincides with the adjoint process of the dual problem and vice versa. Finally we solve three constrained utility maximization problems, which contrasts the simplicity of the duality approach we propose and the technical complexity of solving the primal problem directly.  相似文献   

10.
We introduce an entropy-like proximal algorithm for the problem of minimizing a closed proper convex function subject to symmetric cone constraints. The algorithm is based on a distance-like function that is an extension of the Kullback-Leiber relative entropy to the setting of symmetric cones. Like the proximal algorithms for convex programming with nonnegative orthant cone constraints, we show that, under some mild assumptions, the sequence generated by the proposed algorithm is bounded and every accumulation point is a solution of the considered problem. In addition, we also present a dual application of the proposed algorithm to the symmetric cone linear program, leading to a multiplier method which is shown to possess similar properties as the exponential multiplier method (Tseng and Bertsekas in Math. Program. 60:1–19, 1993) holds.  相似文献   

11.
We study symmetric tensor spaces and cones arising from polynomial optimization and physical sciences.We prove a decomposition invariance theorem for linear operators over the symmetric tensor space,which leads to several other interesting properties in symmetric tensor spaces.We then consider the positive semidefiniteness of linear operators which deduces the convexity of the Frobenius norm function of a symmetric tensor.Furthermore,we characterize the symmetric positive semidefinite tensor(SDT)cone by employing the properties of linear operators,design some face structures of its dual cone,and analyze its relationship to many other tensor cones.In particular,we show that the cone is self-dual if and only if the polynomial is quadratic,give specific characterizations of tensors that are in the primal cone but not in the dual for higher order cases,and develop a complete relationship map among the tensor cones appeared in the literature.  相似文献   

12.
We study homogeneous convex cones. We first characterize the extreme rays of such cones in the context of their primal construction (due to Vinberg) and also in the context of their dual construction (due to Rothaus). Then, using these results, we prove that every homogeneous cone is facially exposed. We provide an alternative proof of a result of Güler and Tunç el that the Siegel rank of a symmetric cone is equal to its Carathéodory number. Our proof does not use the Jordan-von Neumann-Wigner characterization of the symmetric cones but it easily follows from the primal construction of the homogeneous cones and our results on the geometry of homogeneous cones in primal and dual forms. We study optimal self-concordant barriers in this context. We briefly discuss the duality mapping in the context of automorphisms of convex cones and prove, using numerical integration, that the duality mapping is not an involution on certain self-dual cones.Research of this author was supported in part by a Summer Undergraduate Research Assistantship Award from NSERC (Summer 2001) and a research grant from NSERC while she was an undergraduate student at Faculty of Mathematics, University of Waterloo.Research of this author was supported in part by a PREA from Ontario, Canada and research grants from NSERC. Corresponding author.Mathematics Subject Classification (2000): 90C25, 90C51, 90C60, 90C05, 65Y20, 52A41, 49M37, 90C30  相似文献   

13.
In this work, we propose a proximal algorithm for unconstrained optimization on the cone of symmetric semidefinite positive matrices. It appears to be the first in the proximal class on the set of methods that convert a Symmetric Definite Positive Optimization in Nonlinear Optimization. It replaces the main iteration of the conceptual proximal point algorithm by a sequence of nonlinear programming problems on the cone of diagonal definite positive matrices that has the structure of the positive orthant of the Euclidian vector space. We are motivated by results of the classical proximal algorithm extended to Riemannian manifolds with nonpositive sectional curvature. An important example of such a manifold is the space of symmetric definite positive matrices, where the metrics is given by the Hessian of the standard barrier function −lndet(X). Observing the obvious fact that proximal algorithms do not depend on the geodesics, we apply those ideas to develop a proximal point algorithm for convex functions in this Riemannian metric.  相似文献   

14.
We make a unified analysis of interior proximal methods of solving convex second-order cone programming problems. These methods use a proximal distance with respect to second-order cones which can be produced with an appropriate closed proper univariate function in three ways. Under some mild conditions, the sequence generated is bounded with each limit point being a solution, and global rates of convergence estimates are obtained in terms of objective values. A class of regularized proximal distances is also constructed which can guarantee the global convergence of the sequence to an optimal solution. These results are illustrated with some examples. In addition, we also study the central paths associated with these distance-like functions, and for the linear SOCP we discuss their relations with the sequence generated by the interior proximal methods. From this, we obtain improved convergence results for the sequence for the interior proximal methods using a proximal distance continuous at the boundary of second-order cones.  相似文献   

15.
In this paper we present penalty and barrier methods for solving general convex semidefinite programming problems. More precisely, the constraint set is described by a convex operator that takes its values in the cone of negative semidefinite symmetric matrices. This class of methods is an extension of penalty and barrier methods for convex optimization to this setting. We provide implementable stopping rules and prove the convergence of the primal and dual paths obtained by these methods under minimal assumptions. The two parameters approach for penalty methods is also extended. As for usual convex programming, we prove that after a finite number of steps all iterates will be feasible.  相似文献   

16.
The convergence of primal and dual central paths associated to entropy and exponential functions, respectively, for semidefinite programming problem are studied in this paper. It is proved that the primal path converges to the analytic center of the primal optimal set with respect to the entropy function, the dual path converges to a point in the dual optimal set and the primal-dual path associated to this paths converges to a point in the primal-dual optimal set. As an application, the generalized proximal point method with the Kullback-Leibler distance applied to semidefinite programming problems is considered. The convergence of the primal proximal sequence to the analytic center of the primal optimal set with respect to the entropy function is established and the convergence of a particular weighted dual proximal sequence to a point in the dual optimal set is obtained.  相似文献   

17.
Ziyan Luo  Naihua Xiu 《Positivity》2010,14(3):481-499
In this paper, we consider the Lyapunov-type linear programming and its dual over symmetric cones. By introducing and characterizing the generalized inverse of Lyapunov operator in Euclidean Jordan algebras, we establish two kinds of Lyapunov-type Farkas’ lemmas to exhibit feasibilities of the corresponding primal and dual programming problems, respectively. As one of the main results, we show that the feasibilities of the primal and dual problems lead to the solvability of the primal problem and zero duality gap under some mild condition. In this case, we obtain that any solution to the pair of primal and dual problems is equivalent to the solution of the corresponding KKT system.  相似文献   

18.
We propose a new modified primal–dual proximal best approximation method for solving convex not necessarily differentiable optimization problems. The novelty of the method relies on introducing memory by taking into account iterates computed in previous steps in the formulas defining current iterate. To this end we consider projections onto intersections of halfspaces generated on the basis of the current as well as the previous iterates. To calculate these projections we are using recently obtained closed-form expressions for projectors onto polyhedral sets. The resulting algorithm with memory inherits strong convergence properties of the original best approximation proximal primal–dual algorithm. Additionally, we compare our algorithm with the original (non-inertial) one with the help of the so called attraction property defined below. Extensive numerical experimental results on image reconstruction problems illustrate the advantages of including memory into the original algorithm.  相似文献   

19.
Joachim Gwinner 《Optimization》2017,66(8):1323-1336
Abstract

This paper addresses a class of inequality constrained variational inequalities and nonsmooth unilateral variational problems. We present mixed formulations arising from Lagrange multipliers. First we treat in a reflexive Banach space setting the canonical case of a variational inequality that has as essential ingredients a bilinear form and a non-differentiable sublinear, hence convex functional and linear inequality constraints defined by a convex cone. We extend the famous Brezzi splitting theorem that originally covers saddle point problems with equality constraints, only, to these nonsmooth problems and obtain independent Lagrange multipliers in the subdifferential of the convex functional and in the ordering cone of the inequality constraints. For illustration of the theory we provide and investigate an example of a scalar nonsmooth boundary value problem that models frictional unilateral contact problems in linear elastostatics. Finally we discuss how this approach to mixed formulations can be further extended to variational problems with nonlinear operators and equilibrium problems, and moreover, to hemivariational inequalities.  相似文献   

20.
《Optimization》2012,61(11):2395-2416
We first discuss some properties of the solution set of a monotone symmetric cone linear complementarity problem (SCLCP), and then consider the limiting behaviour of a sequence of strictly feasible solutions within a wide neighbourhood of central trajectory for the monotone SCLCP. Under assumptions of strict complementarity and Slater’s condition, we provide four different characterizations of a Lipschitzian error bound for the monotone SCLCP in general Euclidean Jordan algebras. Thanks to the observation that a pair of primal-dual convex quadratic symmetric cone programming (CQSCP) problems can be exactly formulated as the monotone SCLCP, thus we obtain the same error bound results for CQSCP as a by-product.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号