首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT

Two series of bimesogens with phenyl benzoate mesogenic units were prepared: one series having a heptamethylene spacer and the other a pentamethylene spacer with two ether-linking groups. These materials were prepared to provide experimental backing to the widely held hypothesis that methylene-linked bimesogens are more likely to exhibit the twist-bend nematic mesophase than their ether-linked counterparts. Several of the methylene-linked materials exhibited nematic and NTB mesophases, whereas the analogous ether-linked materials gave only nematic phases albeit with significantly higher clearing points. Virtual N–NTB transition temperatures for both methylene- and ether-linked bimesogens were extrapolated by constructing binary phase diagrams with the well-studied twist-bend material CB9CB. Contrary to our expectations these virtual transition temperatures were in most cases higher for the ether-linked bimesogens than in the analogous methylene compounds, this runs counter to reported theories and hypotheses that the incorporation of ether-linking groups should serve to destabilise the NTB phase.  相似文献   

2.
Despite the relationship between molecular structure and the occurrence of the twist-bend nematic phase being partially understood, very little is known about how these relationships are manifested for ether-linked bimesogens. In this article, we report several novel ether-linked bimesogens that exhibit the NTB phase and explore how the thermal properties of these materials are largely governed by the angle between the two aromatic, carbocyclic or rigid cyclic units.  相似文献   

3.
Eleven members of the homologous series of liquid crystal dimers, the α,ω-bis(4-cyanobiphenyl-4′-yl) alkanedioates, have been synthesised and their transitional properties characterised. These dimers consist of two cyanobiphenyl units connected by an alkyl spacer attached via ester linkages. All eleven members exhibit exclusively nematic behaviour. The nematic–isotropic transition temperatures, TNI, and associated entropy changes, ?SNI/R, exhibit pronounced alternations as the length and parity of the spacer is varied; this is characteristic behaviour of liquid crystal dimers. The transitional properties of the ester-linked dimers are compared with the corresponding materials having either ether, methylene or carbonate linkages between the spacer and mesogenic units. For short spacer lengths and both odd- and even-membered dimers, the ester-linked materials show the highest values of TNI and the methylene-linked the lowest. For longer spacer lengths, TNI of the carbonate-linked dimers fall between those of the corresponding ester- and ether-linked dimers. The ether-linked materials show the largest alternation in ?SNI/R on varying spacer length and the carbonate-linked dimers the lowest. This behaviour is interpreted in terms of the molecular geometry and it is suggested that the ether- and ester-linked odd-membered dimers have rather similar shapes. A phase diagram constructed using binary mixtures of the pentyl member of this ester-linked series and the known twist-bend nematogen, 1,7-bis(4-cyanobiphenyl-4′-yl)heptane (CB7CB), is presented. The twist-bend nematic–nematic transition temperature of the mixtures shows a striking convex curvature as the concentration of CB7CB is decreased, and so it is not possible to estimate a virtual twist-bend nematic–nematic transition temperature for the ester-linked material.  相似文献   

4.
《Liquid crystals》2012,39(13-14):2102-2114
ABSTRACT

The synthesis and characterisation of a new set of azobenzene-based non-symmetric liquid crystal dimers, the 1-(4-substitutedazobenzene-4?-yloxy)-6-(4-methoxybiphenyl-4?-yl)hexanes (MeOB6OABX), that exhibit the twist-bend nematic phase, NTB, is described. The terminal substituents are methyl, methoxy, ethyl, butyl, butoxy, and nitrile. All six dimers exhibit both the NTB and conventional nematic, N, phases. The identification of the NTB phase was performed using polarised light microscopy and confirmed for binary mixtures with a standard twist-bend nematogen 1,7-bis-4-(4?-cyanobiphenyl) heptane (CB7CB). The transitional behaviour of the MeOB6OABX dimers is compared with that of the corresponding ether-linked 1-(4-substitutedazobenzene-4?-yloxy)-6-(4-methoxybiphenyl-4?-yloxy)pentanes, MeOBO5OABX, all of which exhibit a conventional nematic phase. In addition, the nitrile-substituted MeOBO5OABCN shows the NTB phase. The behaviour of these non-symmetric dimers is also compared to that of the corresponding symmetric dimers. Differences in the transitional properties between these sets of new materials are accounted for in terms of not only molecular shape but also other factors including the strength of the mixed mesogen interaction.  相似文献   

5.
Four series of liquid crystal dimers have been prepared containing either ether-linked or methylene-linked spacers. Changing the spacer from being ether-linked, i.e. O(CH2) n O, to methylene-linked, i.e. (CH2) n +2, results in decreased nematic-isotropic transition temperatures, and this reduction is more pronounced for odd-membered spacers. By contrast, the entropy change associated with the nematic-isotropic transition is higher for an even-membered methylene-linked dimer than for the corresponding ether-linked material. This trend is reversed for odd members. These observations are completely in accord with the predictions of a theoretical model developed by Luckhurst and co-workers in which the only difference between the dimers is their shape. For the highly non-linear pentamethylene-linked dimers, only those with a short terminal chain exhibited fluid smectic behaviour, specifically, a monotropic alternating SmC structure which allowed for the efficient packing of the bent molecules. Once the terminal chain reached a value of m = 9, a modulated ordered smectic phase was observed. For even-membered dimers, which exhibit only nematic phases upon melting for short terminal chain lengths, smectic phase behaviour was promoted with increasing terminal chain length, as is conventionally observed. Even-membered ether-linked dimers exhibited a SmC phase whereas even-membered methylene-linked dimers exhibited an ordered smectic G/J phase. Thus, it would appear that the differences in the transitional properties of ether- and methylene-linked dimers can be accounted for largely in terms of geometrical factors.  相似文献   

6.
John W. Goodby 《Liquid crystals》2017,44(12-13):1755-1763
ABSTRACT

In this article, the relationship between molecular architecture and the formation of twist-bend phases is reviewed under the context of shape dependency. We conclude that the twist-bend phase is a universal phenomenon, which occurs in a wide variety of materials, for dimers through to main chain polymers. In the process, the chemical information on molecular design is effectively lost or irrelevant, and molecular topology takes precedence over electrostatic interactions in mesophase formation. As a consequence of this macro-scale material, engineering by shape alone becomes a possibility, potentially more phases may be realised, and entropy is anisotropic.  相似文献   

7.
We prepared a significant number of unsymmetrical liquid‐crystalline dimers that exhibit the twist‐bend nematic phase; a state of matter that exhibits spontaneous breaking of mirror symmetry and, for some materials, a microsecond electrooptic response. A number of novel unsymmetrical bimesogens were synthesized and in comparing their thermal behaviour to previous literature examples, we have uncovered an unexpected relationship between the thermal stability of the nematic and NTB phases. This relationship demonstrates that molecular shape dictates the incidence of this fascinating phase of matter and leads us to speculate as to the existence of “twist‐bend nematic phases” on length scales beyond those of the molecule.  相似文献   

8.
ABSTRACT

One of the current challenges in liquid crystal science is to understand the molecular factors leading to the formation of the intriguing twist-bend nematic phase (NTB) and determine its properties. During our earlier hunt for the NTB phase created on cooling directly from the isotropic phase and not the nematic phase, we had prepared 30 symmetric liquid crystal dimers. These had odd spacers and methylene links to the two mesogenic groups; desirable but clearly not essential features for the formation of the NTB. Here, we report the phases that the dimers exhibit and their transition temperatures as functions of both the lengths of the spacer and the terminal chains. In addition we describe the transitional entropies, their optical textures, the X-ray scattering patterns and the 2H NMR spectra employed in characterising the phases. All of which may lead to important properties of the twist-bend nematic phase.  相似文献   

9.
Herein we report a comprehensive study on novel carbonyl- and ethenyl-linked symmetric dimers that combine synthesis, mesomorphic properties and molecular modelling. The study has been focused on the impact of geometry imposed by the linkage group on the incidence of the twist-bend nematic (NTB) phase. Comparison of the mesomorphic properties of these two series complemented with computational studies of conformational space around the linkage group points molecular curvature and intramolecular torsion plays important role in the appearance of the NTB phase and can be regarded as the basic structural requirements for design of new twist-bend nematogen materials.  相似文献   

10.
ABSTRACT

The synthesis and characterisation of a range of non-symmetric liquid crystal dimers designed to exhibit the twist-bend nematic phase is reported. Beginning with 1-(4-cyanobiphenyl-4′-yloxy)-6-(4-cyanobiphenyl-4′-yl) hexane, each nitrile group is exchanged systematically for a methoxy group. The behaviour of these dimers is interpreted in terms of their bent shape being the predominant driving force for the formation of the twist-bend nematic phase, and the small differences between the twist-bend nematic–nematic transition temperatures are attributed to the differences between the interaction strength parameters of the mesogenic units. The 4-alkyloxyphenyl 4-[6-(4′-cyanobiphenyl-4-yl)hexyloxy]benzoates with ethyl, butyl, hexyl and octyl chains show the twist-bend nematic phase, whereas the corresponding 4-alkyloxyphenyl 4-[5-(4′-cyanobiphenyl-4-yloxy)pentyloxy]benzoates do not. This difference in behaviour is attributed to the more bent structure of the former. Increasing the terminal chain length initially decreases the twist-bend nematic–nematic transition temperature and this suggests that the chain disrupts the interactions between the mesogenic units. Subsequent increases in chain length have a smaller effect suggesting that the chain can be accommodated within an intercalated arrangement. The transitional behaviour of 1-(4-cyanobiphenyl-4′-yloxy)-6-(4-butyloxybiphenyl-4′-yl) hexane is compared to that of 1-(4-cyanobiphenyl-4′-yloxy)-6-(4-((S)-2-methyl)butyloxybiphenyl-4′-yl) hexane, and it is shown that chain branching strongly destabilises the twist-bend nematic phase. This is attributed to difficulties associated with packing the dimers.  相似文献   

11.
The nematic twist-bend (NTB) liquid crystal phase possesses a local helical structure with a pitch length of a few nanometres and is the first example of spontaneous symmetry breaking in a fluid system. All known examples of the NTB phase occur in materials whose constituent mesogenic units are aromatic hydrocarbons. It is not clear if this is due to synthetic convenience or a bona fide structural requirement for a material to exhibit this phase of matter. In this work we demonstrate that materials consisting largely of saturated hydrocarbons can also give rise to this mesophase.  相似文献   

12.
Liquid crystal (LC) dimers with well-defined composition and structure arouse broad attentions for their exhibiting LC properties beyond conventional low molar mass mesogens and serving as fascinating model compounds for LC polymers. Here in this work, a series of LC dimers bridged with a phosphonic group have been synthesized through a facile free radical mediated addition reaction between hypophosphorous acid and vinyl terminated cyanobiphenyl mesogens with variant length alkyl spacers. In addition, two esterified derivatives and a group of mono-addition homologues with a terminal phosphonic acid group have also been prepared for comparison study. All the newly synthesized compounds exhibit monotropic nematic (N) phase with typical schlieren textures except for the LC dimer with the longest eleven-methylene spacer, which surprisingly shows twist-bend nematic (NTB) phase directly from the isotropic state upon cooling. Moreover, the thermal transition properties such as the nematic-isotropic transition temperatures and associated entropy changes of the series LC dimers display a modest odd-even effect. Furthermore, both the LC dimers and the mono-addition homologues in N phase are quite easy to achieve homeotropic alignment upon annealing thanks to the supramolecular interactions between the introduced phosphonic acid group and the hydroxylated glass surface. This work thus provides a novel synthesis strategy for a class of LC materials bridged with a phosphonic acid group prone to further functionalization, which may serve as promising vertical alignment agents and pave the way for developing a new kind of functionalized LC materials of NTB phase.  相似文献   

13.
ABSTRACT

The synthesis and characterisation of two new sets of non-symmetric liquid crystal dimers is reported, the 1-(4-substitutedazobenzene-4′-yloxy)-6-(4-cyanobiphenyl-4′-yl)hexanes (CB6OABX) and 1-(4-substitutedazobenzene-4′-yloxy)-6-(4-cyanobiphenyl-4′-yloxy)pentanes (CBO5OABX). The terminal substituents are methyl, methoxy, butyl, butyloxy, nitrile and nitro. All the CB6OABX dimers exhibit twist-bend nematic (NTB) and nematic (N) phases. The CBO5OABX dimers also all show an N phase but only the butyl and butyloxy homologues exhibit the NTB phase. The transitional behaviour of the non-symmetric dimers is compared to that of the corresponding symmetric dimers, the 1,5-bis(4-substitutedazobenzene-4′-yloxy)pentanes (XABO5OABX) and either 1,7-bis(4-cyanobiphenyl-4′-yl)heptane or 1,5-bis(4-cyanobiphenyl-4′-yloxy)pentane. The XABO5OABX dimers all show a nematic phase and in addition, the butyl homologue exhibits a smectic A phase. The difference in transitional behaviour between the CB6OABX and CBO5OABX dimers is attributed to the difference in their molecular shapes arising from different bond angles between the para axis of the cyanobiphenyl unit and the first bond in the spacer. Specifically, the all-trans conformation of a CBO5OABX dimer is more linear than that of the corresponding CB6OABX dimer. Differences within each set of dimers are attributed to changes in the average molecular shape and the strength of the mixed mesogen interaction on varying the terminal group. Crystal structures are reported for CB6OABOMe, CBO5OABNO2 and MeOABO5OABOMe.  相似文献   

14.
A selection of pyrene-based liquid crystal dimers have been prepared, containing either methylene-ether or diether linked spacers of varying length and parity. All the diether linked materials, CBOnO.Py (n=5, 6, 11, 12), exhibit conventional nematic and smectic A phases, with the exception of CBO11O.Py which is exclusively nematic. The methylene-ether linked dimer, CBnO.Py, with an even-membered spacer (n=5) was solely nematogenic, but odd-members (n=6, 8, 10) exhibited both nematic and twist-bend nematic phases. Replacement of the cyanobiphenyl fragment by cyanoterphenyl giving CT6O.Py, gave elevated melting and nematic-isotropic transition temperatures, and SmA and SmCA phases were observed on cooling the nematic phase. Intermolecular face-to-face associations of the pyrene moieties drive glass formation, and all these materials have a glass transition temperature at or above room temperature. The stability of the glassy twist-bend nematic phase allowed for its study using AFM, and the helical pitch length, PTB, was measured as 6.3 and 6.7 nm for CB6O.Py and CB8O.Py, respectively. These values are comparable to the shortest pitch of a twist-bend nematic phase measured to date.  相似文献   

15.
The synthesis and mesomorphic properties of novel non-symmetrical discotic dimers have been investigated. Dimers have been prepared by the combination of electron-deficient (n-type) anthraquinone and electron-rich (p-type) triphenylene discotic monomers. The mesophases have been characterised using polarising optical microscopy, differential scanning calorimetry and X-ray diffraction. Most of the dimers have been shown to exhibit a rectangular columnar mesophase and one has a nematic columnar mesophase also. Charge transfer behaviour has been studied by UV–Vis spectroscopy.  相似文献   

16.
The nematic liquid-crystalline phase exhibits average orientational order, with no positional organisation. So-called modulated nematic phases exhibit this same orientational order with an additional spatially periodic modulation of the nematic director, the most common of which is the twist-bend nematic phase. We report a pentaerythritol derived tetrapode which exhibits a nematic-like mesophase at ambient temperature, and we denote this new mesophase ‘NX’ to indicate a nematic phase of unknown structure. X-ray scattering experiments refute the possibility of positional order, yet optical textures are consistent with a periodic structure. We suggest that the mesophase exhibited by this material is a new type of nematic-like mesophase with some form of modulated structure. We find the NX phase to exhibit an electrooptic response consistent with a nematic-like phase.  相似文献   

17.
ABSTRACT

The synthesis and characterisation of two series of cyanobiphenyl-based liquid crystal dimers containing sulfur links between the spacer and mesogenic units, the 4?-[1,ω-alkanediylbis(thio)]bis-[1,1?-biphenyl]-4-carbonitriles (CBSnSCB), and 4?-({ω-[(4?-cyano[1,1?-biphenyl]-4-yl)oxy]alkyl}thio)[1,1?-biphenyl]-4-carbonitriles (CBSnOCB) are described. The odd members of both series show twist-bend nematic and nematic phases, whereas the even members exhibit only the nematic phase. An analogous cyanoterphenyl-based dimer, 34-{6-[(4?-cyano[1,1?-biphenyl]-4-yl)thio]-hexyl}[11,21:24,31-terphenyl]-14-carbonitrile (CT6SCB), is also reported and shows enantiotropic NTB and N phases. The transitional properties of these dimers are discussed in terms of molecular curvature, flexibility and biaxiality. The same molecular factors also influence the birefringence of nematic phases. Resonant X-ray scattering studies of the twist-bend nematic phase at both the carbon and sulfur absorption edges were performed, which allowed for the determination of critical behaviour of the helical pitch at the transition to the nematic phase, the behaviour was found to be independent of molecular structure. It was also observed that despite the different molecular bending angle and flexibility, in all compounds the helical pitch length far from the N-NTB transition corresponds to 4 longitudinal molecular distances.  相似文献   

18.
The synthesis and mesomorphic behaviour are reported of a new series of dimers containing 4‐nitrobenzohydrazide and azobenzene groups as the mesogenic units. These non‐symmetric liquid crystal dimers are found to exhibit a monolayer smectic A phase (SmA1). Lateral hydrogen bonding and strong dipole–dipole interactions are shown to be the major driving forces for the formation of the SmA1 phase. The present study indicates that the intermolecular interactions and thus the mesophase morphology of the liquid crystal dimers can be controlled by the appropriate selection of the molecular fragments capable of forming H‐bonds.  相似文献   

19.
Abstract

The synthesis and characterization of seven novel (R)-2-(4-substituted-phenoxy)propanonitriles are described. The propanonitriles were prepared to evaluate their potential use as thermochromics and ferroelectric dopants, as well as to determine their twist sense properties. The materials exhibit smectic and chiral nematic phases of high thermal stability; the mesogenic behaviour of the nitriles is directly related to the type of two-ring core unit employed. The effects of the different molecular geometries and polarizabilities of the liquid crystalline cores on mesophase stability are discussed, particularly in relation to other members of this series. The chiral nematic phase of the propanonitriles is assigned as having a left-handed twist sense from contact preparation studies, and this is in agreement with rules relating absolute configuration and molecular structure to helical twist sense.  相似文献   

20.
ABSTRACT

The synthesis and characterisation of several members of the 1,ω-bis(4-cyanobiphenyl-4′-yl) alkane (CBnCB) and the 1-(4-cyanobiphenyl-4′-yloxy)-ω-(4-cyanobiphenyl-4′-yl) alkane (CBnOCB) homologous series are reported. The new odd members described CB5CB, CB13CB, CB4OCB, CB8OCB and CB10OCB all exhibit twist-bend nematic and nematic phases. The members of these series already reported in literature, CB7CB, CB9CB, CB11CB and CB6OCB, were also prepared in order to allow for a direct comparison of their transitional properties. The properties of these dimers are also compared to those of the corresponding members of the 1,ω-bis(4-cyanobiphenyl-4,-yloxy) alkanes (CBOnOCB). For any given total spacer length, for odd members of these series, the nematic–isotropic transition temperatures and associated entropy changes are greatest for the CBOnOCB dimer and lowest for the CBnCB dimer. These trends are understood in terms of molecular shape. For short spacer lengths, the twist-bend nematic–nematic transition temperature (TNTBN) is higher for the CBnOCB series than for the CBnCB series but this is reversed as the spacer length increases. Of the CBOnOCB dimers, a virtual value of TNTBN was estimated for CBO3OCB and TNTBN was measured for CBO5OCB. These values are considerably lower than those observed for the corresponding members of the CBnCB or CBnOCB series. The dependence of TNTBN on molecular structure is discussed not only in terms of the molecular curvature but also in the ability of the molecules to pack efficiently. As the temperature range of the preceding nematic phase increases, so the twist-bend nematic–nematic transition entropy change decreases and the transition approaches second order for the longer spacers. For comparative purposes, the transitional behaviour of the even-membered dimers CB6CB, CB5OCB and CBO4OCB is reported and differences accounted for in terms of molecular shape.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号