首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using Malliavin Calculus techniques, we derive closed-form expressions for the at-the-money behaviour of the forward implied volatility, its skew and its curvature, in general Markovian stochastic volatility models with continuous paths.  相似文献   

2.
This paper proposes and makes a study of a new model for volatility index option pricing. Factors such as mean‐reversion, jumps, and stochastic volatility are taken into consideration. In particular, the positive volatility skew is addressed by the jump and the stochastic volatility of volatility. Daily calibration is used to check whether the model fits market prices and generates positive volatility skews. Overall, the results show that the mean‐reverting logarithmic jump and stochastic volatility model (called MRLRJSV in the paper) serves as the best model in all the required aspects. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
This article investigates the valuation of currency options when the dynamic of the spot Foreign Exchange (FX) rate is governed by a two-factor Markov-modulated stochastic volatility model, with the first stochastic volatility component driven by a lognormal diffusion process and the second independent stochastic volatility component driven by a continuous-time finite-state Markov chain model. The states of the Markov chain can be interpreted as the states of an economy. We employ the regime-switching Esscher transform to determine a martingale pricing measure for valuing currency options under the incomplete market setting. We consider the valuation of the European-style and American-style currency options. In the case of American options, we provide a decomposition result for the American option price into the sum of its European counterpart and the early exercise premium. Numerical results are included.  相似文献   

4.
In this study, we extend the multiscale stochastic volatility model of [Fouque J‐P, Lorig MJ, SIAM J Financial Math. 2011;2(1):221‐254] by incorporating a slow varying factor of volatility. The resulting model can be viewed as a multifactor extension of the Heston model with two additional factors driving the volatility levels. An asymptotic analysis consisting of singular and regular perturbation expansions is developed to obtain an approximation to European option prices. We also find explicit expressions for some essential functions that are available only in integral formulas in the work of [Fouque J‐P, Lorig MJ, SIAM J Financial Math. 2011;2(1):221‐254]. This finding basically leads to considerable reduction in computational time for numerical calculation as well as calibration problems. An accuracy result of the asymptotic approximation is also provided. For numerical illustration, the multifactor Heston model is calibrated to index options on the market, and we find that the resulting implied volatility surfaces fit the market data better than those produced by the multiscale stochastic volatility model of [Fouque J‐P, Lorig MJ, SIAM J Financial Math. 2011;2(1):221‐254], particularly for long‐maturity call options.  相似文献   

5.
We derive a nonlinear filter and the corresponding filter-based estimates for a threshold autoregressive stochastic volatility (TARSV) model. Using the technique of a reference probability measure, we derive a nonlinear filter for the hidden volatility and related quantities. The filter-based estimates for the unknown parameters are then obtained from the EM algorithm.  相似文献   

6.
In the present paper we analyse the American option valuation problem in a stochastic volatility model when transaction costs are taken into account. We shall show that it can be formulated as a singular stochastic optimal control problem, proving the existence and uniqueness of the viscosity solution for the associated Hamilton–Jacobi–Bellman partial differential equation. Moreover, after performing a dimensionality reduction through a suitable choice of the utility function, we shall provide a numerical example illustrating how American options prices can be computed in the present modelling framework.  相似文献   

7.
In this paper, we prove a kind of Abelian theorem for a class of stochastic volatility models (X,V)(X,V) where both the state process XX and the volatility process VV may have jumps. Our results relate the asymptotic behavior of the characteristic function of XΔXΔ for some Δ>0Δ>0 in a stationary regime to the Blumenthal–Getoor indexes of the Lévy processes driving the jumps in XX and VV. The results obtained are used to construct consistent estimators for the above Blumenthal–Getoor indexes based on low-frequency observations of the state process XX. We derive convergence rates for the corresponding estimator and show that these rates cannot be improved in general.  相似文献   

8.
In this article, we study a long memory stochastic volatility model (LSV), under which stock prices follow a jump-diffusion stochastic process and its stochastic volatility is driven by a continuous-time fractional process that attains a long memory. LSV model should take into account most of the observed market aspects and unlike many other approaches, the volatility clustering phenomenon is captured explicitly by the long memory parameter. Moreover, this property has been reported in realized volatility time-series across different asset classes and time periods. In the first part of the article, we derive an alternative formula for pricing European securities. The formula enables us to effectively price European options and to calibrate the model to a given option market. In the second part of the article, we provide an empirical review of the model calibration. For this purpose, a set of traded FTSE 100 index call options is used and the long memory volatility model is compared to a popular pricing approach – the Heston model. To test stability of calibrated parameters and to verify calibration results from previous data set, we utilize multiple data sets from NYSE option market on Apple Inc. stock.  相似文献   

9.
10.
Based on Cox and Matthews Exponential Time Differencing (ETD) approach, a fourth–order strongly–stable method having real distinct poles is developed and applied to solve American options under stochastic volatility with nonsmooth payoffs. A computationally efficient version of the method is constructed using partial fraction splitting technique. This approach requires to solve several backward Euler‐type linear systems at each time step. Numerical experiments are presented to demonstrate the computational efficiency, accuracy, and reliability of the method. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

11.
Stochastic volatility models (SVMs) represent an important framework for the analysis of financial time series data, together with ARCH-type models; but unlike the latter, the former, at least from the statistical point of view, cannot rely on the possibility of obtaining exact inference, in particular with regard to maximum likelihood estimates for the parameters of interest. For SVMs, usually only approximate results can be obtained, unless particularly sophisticated estimation strategies like exact non-gaussian filtering methods or simulation techniques are employed. In this paper we review SVM and present a new characterization for them, called ‘generalized bilinear stochastic volatility’. © 1996 John Wiley & Sons, Ltd.  相似文献   

12.
We extend the Heston stochastic volatility model to a Hilbert space framework. The tensor Heston stochastic variance process is defined as a tensor product of a Hilbert-valued Ornstein–Uhlenbeck process with itself. The volatility process is then defined by a Cholesky decomposition of the variance process. We define a Hilbert-valued Ornstein–Uhlenbeck process with Wiener noise perturbed by this stochastic volatility, and compute the characteristic functional and covariance operator of this process. This process is then applied to the modeling of forward curves in energy and commodity markets. Finally, we compute the dynamics of the tensor Heston volatility model when the generator is bounded, and study its projection down to the real line for comparison with the classical Heston dynamics.  相似文献   

13.
Empirical evidence suggests that single factor models would not capture the full dynamics of stochastic volatility such that a marked discrepancy between their predicted prices and market prices exists for certain ranges (deep in‐the‐money and out‐of‐the‐money) of time‐to‐maturities of options. On the other hand, there is an empirical reason to believe that volatility skew fluctuates randomly. Based upon the idea of combining stochastic volatility and stochastic skew, this paper incorporates stochastic elasticity of variance running on a fast timescale into the Heston stochastic volatility model. This multiscale and multifactor hybrid model keeps analytic tractability of the Heston model as much as possible, while it enhances capturing the complex nature of volatility and skew dynamics. Asymptotic analysis based on ergodic theory yields a closed form analytic formula for the approximate price of European vanilla options. Subsequently, the effect of adding the stochastic elasticity factor on top of the Heston model is demonstrated in terms of implied volatility surface. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
We derive derivative-free formulas for the Delta and other Greeks of options written on an asset modelled by a geometric Brownian motion with stochastic volatility of Barndorff-Nielsen and Shephard type. The method applies the Malliavin calculus in Wiener space which moves differentiation of the payoff function of the option to a random weight function. Our method paves the way for simple Monte Carlo approaches, illustrated by several numerical examples.  相似文献   

15.
In this paper, we consider a stochastic volatility model for pricing multi‐asset European options that are widely used in the real world, under the assumption that the volatilities are driven by different OU processes. Using the singular perturbation method for multi‐parameter and the boundary layer theory, we derive a uniform asymptotic expansion for the option prices, as well as the uniform error estimates. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
《Applied Mathematical Modelling》2014,38(11-12):2771-2780
In this paper it is shown how symmetry methods can be used to find exact solutions for European option pricing under a time-dependent 3/2-stochastic volatility model dv=kv(A(t)-v)dt+bv32dZ. This model with A(t) constant has been proven by many authors to outperform the Heston model in its ability to capture the behaviour of volatility and fit option prices. Further, singular perturbation techniques are used to derive a simple analytic approximation suitable for pricing options with short tenor, a common feature of most options traded in the market.  相似文献   

17.
We consider the Euler-Maruyama discretization of stochastic volatility model dSt = σtStdWt, dσt = ωσtdZt, t ∈ [0, T], which has been widely used in financial practice, where Wt,Zt, t ∈ [0, T], are two uncorrelated standard Brownian motions. Using asymptotic analysis techniques, the moderate deviation principles for log Sn (or log |Sn| in case Sn is negative) are obtained as n → ∞ under different discretization schemes for the asset price process St and the volatility process σt. Numerical simulations are presented to compare the convergence speeds in different schemes.  相似文献   

18.
Efficient L-stable numerical method for semilinear parabolic problems with nonsmooth initial data is proposed and implemented to solve Heston’s stochastic volatility model based PDE for pricing American options under stochastic volatility. The proposed new method is also used to solve two asset American options pricing problem. Cox and Matthews [S.M. Cox, P.C. Matthews, Exponential time differencing for stiff systems, Journal of Computational Physics 176 (2002) 430-455] developed a class of exponential time differencing Runge-Kutta schemes (ETDRK) for nonlinear parabolic problems. Kassam and Trefethen [A.K. Kassam, L.N. Trefethen, Fourth-order time stepping for stiff PDEs, SIAM Journal on Scientific Computing 26 (4) (2005) 1214-1233] showed that while computing certain functions involved in the Cox-Matthews schemes, severe cancelation errors can occur which affect the accuracy and stability of the schemes. Kassam and Trefethen proposed complex contour integration technique to implement these schemes in a way that avoids these cancelation errors. But this approach creates new difficulties in choosing and evaluating the contour integrals for larger problems. We modify the ETDRK schemes using positivity preserving Padé approximations of the matrix exponential functions and construct computationally efficient parallel version using splitting technique. As a result of this approach it is required only to solve several backward Euler linear problems in serial or parallel.  相似文献   

19.
Five numerical methods for pricing American put options under Heston's stochastic volatility model are described and compared. The option prices are obtained as the solution of a two‐dimensional parabolic partial differential inequality. A finite difference discretization on nonuniform grids leading to linear complementarity problems with M‐matrices is proposed. The projected SOR, a projected multigrid method, an operator splitting method, a penalty method, and a componentwise splitting method are considered. The last one is a direct method while all other methods are iterative. The resulting systems of linear equations in the operator splitting method and in the penalty method are solved using a multigrid method. The projected multigrid method and the componentwise splitting method lead to a sequence of linear complementarity problems with one‐dimensional differential operators that are solved using the Brennan and Schwartz algorithm. The numerical experiments compare the accuracy and speed of the considered methods. The accuracies of all methods appear to be similar. Thus, the additional approximations made in the operator splitting method, in the penalty method, and in the componentwise splitting method do not increase the error essentially. The componentwise splitting method is the fastest one. All multigrid‐based methods have similar rapid grid independent convergence rates. They are about two or three times slower that the componentwise splitting method. On the coarsest grid the speed of the projected SOR is comparable with the multigrid methods while on finer grids it is several times slower. ©John Wiley & Sons, Inc. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2007  相似文献   

20.
In this paper we examine the behaviour of a stochastic model that describes a technological diffusion process (continuously increasing process). Furthermore we obtain a solution for the proposed model through the estimation of the volatility using three different approximations. The adjustment of real data to the final stochastic model confirms its ability of describing and forecasting real cases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号