首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We propose the use of a varied-line-spacing (VLS) holographic polymer-dispersed liquid crystal (H-PDLC) Bragg grating as a switchable image splitter to generate a compatible three-dimensional (3D) stereogram and to increase the viewing angle of the observer. To fabricate the VLS grating, a cylindrical lens is adopted to form a cylindrical wave, which interferes with a plane wave, generating an H-PDLC grating with a continuously varying period. The proposed holographic optical element (HOE)-based image splitter comprises two VLS H-PDLC gratings. It can be attached on a designed pattern, with two rectangles taking the place of conventional liquid crystal display panel pixels, and can separate them into right and left viewing fields with a wider range. Experimental results show that the movement of the eyes of the observer can reach 37.6 mm. A theoretical simulation indicates that a shorter focal length of the cylindrical lens can yield a larger movement range. Switching between two-dimensional and 3D modes can be performed by applying an external alternating-current voltage at ~80 V. The contrast ratio of the diffracted images induced by crosstalk is greater than 60%, which indicates the feasibility of the proposed HOE for 3D image splitting.  相似文献   

2.
The correlations among electrical, optical properties and polymer morphologies of polymer network liquid crystals (PNLCs) constructed with various curing parameters are investigated. The experimental results indicate that high UV curing intensity, low curing temperature and high monomer-dopant concentration reduce the sizes of liquid crystal (LC) domains, thereby decreasing field-off response time and light scattering and increasing phase retardation of the PNLC cells. Photoinitiator concentration affects the LC domain size as well. For instance, increase in photoinitiator concentration results in the acceleration of polymerisation and thus decreases LC domain size. This effect increases driving voltages of the PNLC cells. Notably, excessive amounts of photoinitiator increases the LC domain size of the PNLC cell. Furthermore, dielectric measurement reveals that decrease in the LC domain size generally increases the dielectric relaxation frequency of the PNLC cells. When the LC domain size is small enough, the dielectric relaxation frequency of the PNLC cell is further dominated by the monomer concentration owing to the increased densities of polymer networks that facilitate the alignment of LC molecules.  相似文献   

3.
A simple method for fabricating a polarisation independent blue-phase liquid crystal Fresnel lens (BPLCFL) is demonstrated by utilising the photo-polymerisation-induced phase separation. The BPLC/polymer binary Fresnel zones is obtained well by periodic UV illumination with phase separation of the BPLC molecules and UV-curable pre-polymer mixture. The diffraction efficiency can be controlled when applying a uniform electric field which modulates the phase difference between even and odd Fresnel zones. Experimental results show that the maximum diffraction efficiency reaches 24.3%, which is close to the measured diffraction efficiency of the used Fresnel zone-plate mask of 25%. We also characterise the tunable lens performance at different applied voltages.  相似文献   

4.
Doping a polymer matrix with a minute amount of graphene (0.05–0.25%) had significant effects on the grating formation kinetics and electro‐optical performance of a holographic polymer‐dispersed liquid crystal. Low graphene contents (≤0.1%) reduced the viscosity and induced rapid diffusion, curing, grating formation, and high diffraction efficiency with a diffraction overshoot of 0.05%. Conversely, high graphene contents increased the compound viscosity, and the entire process proceeded slowly. Graphene increased the polymer conductivity and local electric field, reduced the operating voltage from 65 to 25–50 V, and increased the contrast ratio from 7 to 8–23 with a concomitant decrease in rise time. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

5.
A theoretical study has been undertaken to elucidate the three‐dimensional pattern formation during holographic polymer‐dispersed liquid crystal fabrication employing various optical wave interference techniques. Initially miscible mixtures of nematic liquid crystal and reactive multifunctional monomer with a photosensitive initiator were exposed to geometrically arranged interfering beams of light, producing a spatially dependent intensity distribution within the sample. To mimic the spatio‐temporal evolution of periodic photonic structures in three dimensions, the time‐dependent Ginzburg–Landau Model C equations, coupled with spatially variant reaction rate equations, have been solved numerically incorporating the local free energy densities pertaining to isotropic mixing, nematic ordering, and network elasticity. The simulated results reveal some key observations during the formation of electrically switchable photonic crystals with few defects. It appears that the network elasticity term exerts profound effects on resultant structures, indicating that photonic crystals with fewer point defects may be fabricated in shorter times. The simulated results are in good qualitative agreement with reported experimental observations in respect of emerged patterns, length and time scales.  相似文献   

6.
A study of nanoporous polymer gratings, with controllable nanostructured porosity, as a function of grating performance, photopolymerization kinetics and morphology is presented. Modifying the standard holographic polymer dispersed liquid crystal (H-PDLC) system, by including a non-reactive solvent, results in a layered, nanoporous morphology and produces reflective optical elements with excellent optical performance of broadband reflection. The addition of the non-reactive solvent in the pre-polymer mixture results in a morphology typified by void/polymer layer-by-layer structures if sufficient optical energy is used during the holographic writing process. The duration and intensity of optical exposure necessary to form well-aligned nanoporous structures can only be obtained in the modified system by (a) illumination under longer time of holographic interference patterning (30 min) or (b) illumination under very short time of holographic interference patterning (30 s) and followed by post-curing using homogeneous optical exposure for 60 min. Comparatively, a typical H-PDLC is formed in less than 1 min. To further understand the differences in the formation of these two analogous materials, the temporal dynamics of the photoinitiation and polymerization (propagation) kinetics were examined. It is shown herein that the writing exposure gives a cross-linked polymer network that is denser in the bright regions. With 60% (or even 45%) acrylate conversion, almost no free monomer would be left after the writing. Continued exposure serves primarily to add cross-links. This has the tendency to collapse the network, especially the less dense portions, which in effect get glued down to the more dense parts. To the extent that the solvent increases the mobility of the polymer network, this process will be aided. Equally important, the size of the periodic nanopores can be varied from 10 to 50 nm by controlling either the LC concentration in the pre-polymer mixture or by controlling the time of the homogeneous post-cure.  相似文献   

7.
The diffusion of a photochromic dye tracer in polycarbonate was studied by a holographic relaxation technique (forced Rayleigh scattering) at temperatures close to the glass transition temperature. By varying the holographic grating period the results could be interpreted via the spatial scale dependence of apparent diffusion coefficients within a two-state diffusion model. This indicates inhomogeneities on the scale of a few micrometers in the polymer glass.  相似文献   

8.
《Liquid crystals》2012,39(12):1852-1860
ABSTRACT

In this paper, we use multicomponent mutual diffusion method to derive a one-dimensional non-local diffusion dynamic model to describe the diffusion kinetics of a dynamic holographic polymer dispersed liquid crystal grating (H-PDLC) doped with nano-silver. The physical mechanism of diffusion between monomer and liquid crystal, monomer and nano-silver particles is analysed using this model. Using coupled-wave theory, the H-PDLC’s diffraction efficiency curve with the expose time are simulated due to the vivid changing of effective refractive index modulation caused by the movement of concentration of each component with the expose time. Correspondingly, in the experiment, the diffraction efficiency of the grating is measured in real time, which shows the improvement for the holographic properties because of nano-silver doped H-PDLC. The simulation results have a good agreement with experimental data by fitting the corresponding parameters of the model. In addition, through comparing with simulation and experimental results with doping different concentrations of nano-silver particles, the recipe and diffraction characteristics of H-PDLC grating can be improved. Thus, the diffusion Kinetics model can be used to optimise the phase separation of the PDLC grating, and finally to improve the opto-electrical properties of H-PDLC gratings.  相似文献   

9.
10.
The laser-assisted holographic grating recording process in films of azobenzene functionalized polymers is usually studied by observation of the efficiency of light scattering on a developing in time diffraction grating. Various possible mechanisms contributing to grating formation as well as the bulk or surface origin (bulk refractive index and/or relief grating) of light scattering make the analysis of kinetics of grating recording, from the light scattering data only, difficult and ambiguous. To fully explain experimentally observed various and complex (frequently nonexponential) kinetics of the first-order light diffraction intensity, we considered a simple single-exponential growth of the two phase gratings in the same polymer film. In modeling we assumed that the bulk refractive index grating Deltan(t) and the surface relief grating Deltad(t) differ considerably in their growth rates and we allowed for a nonstationary phase shift Deltaphi(t) between them which was experimentally observed during the recording process. The origin of the nonstationary phase shift is a result of a slow shift of interference pattern due to delicate symmetry breaking in illumination conditions (e.g., difference in beam intensities and deviation of exact symmetrical beam incidence angles on the sample). Changing only such parameters as stationary amplitudes of refractive index and relief gratings for a span of phase shifts (0-pi) between them, we obtained a series of kinetic responses which we discuss and interpret. The various examples of temporal evolution of diffraction efficiency for the same grating formation kinetics, modeled in our work, supply evidence that great care must be taken to properly interpret the experimental results.  相似文献   

11.
A minute amount (0.01–0.3 wt %) of ally isocyanate functionalized hyperbranched 2,2‐bis (hydroxymethyl) propionic acid (bis‐MPA) polyester‐16‐hydroxyl (HBP) was incorporated covalently into polyurethane acrylate‐based holographic polymer dispersed liquid crystals (HPDLCs), and its effects on the compound viscosity, grating kinetics, morphology, diffraction efficiency (DE), and electro‐optical properties of the HPDLC films were examined. HBP at low concentrations (0.01–0.05%) reduced the compound viscosity and domain size of liquid crystal (LC) significantly and augmented the cure rate and saturation DE by up to threefold compared to the HBP‐free compound. At high concentrations (0.10 and 0.30%), HBP increased the compound viscosity and decreased the rate of grating formation, giving rise to distorted LC‐polymer interfaces, which caused a significant decrease in the threshold and operating voltages. The rise and decay time showed a minimum and maximum, respectively, when the compound viscosity was a minimum at 0.03% HBP. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

12.
Using the confocal microspectrometric technique we have recorded various resonance enhanced polarized Raman spectra from the surface profile of a permanent holographic diffraction grating prepared by interfering two circularly contra-rotating polarized laser beams on a thin amorphous copolymer film containing azobenzene moities (pDRIM-co-MMA). Different theoretical equations of the Raman scattering intensities, including a treatment taking account for the effect of the high numerical aperture objective, are thus derived. Calculations and simulations of these equations allow for the first time to extract the second <P2> and fourth <P4> coefficients of the chromophore orientation function in the various regions and to obtain the corresponding information entropy distribution functions. We then discuss both contributions of the photo- and mass transport- induced effects in the grating formation mechanisms and confirm the existence of a significant dye concentration gradient (δN/N = 5.1±1.1%) in between the top and bottom regions. All the results are consistent with the model of a viscoelastic flow of the polymer involving large pressure gradients and translational diffusion dynamics.  相似文献   

13.
The interposition of surfactants between polymer and liquid crystal (LC) droplets was theoretically predicted by the positive spreading coefficient (0 < λ31) and utilized to interpret the morphology, grating formation kinetics, diffraction efficiency, and switching of the holographic polymer dispersed liquid crystal (HPDLC), prepared from various types (octanoic acid, poly oxyethylene octyl phenyl ether, and perfluoro‐1‐butanesulfonyl fluoride) and amounts (0–9 wt%) of surfactant and molecular weights of polyol (PPG). Regardless of the surfactant type, diffraction efficiency increased with the addition and increasing amount of surfactant, a tendency consistent with increasing value of spreading coefficient, which is determined by the formulations of grating formation. In contrast, diffraction efficiency showed a maximum with the polypropylene glycol (PPG) molecular weight. Surfactant effectively reduced the anchoring energy and electrically drove the film which otherwise was not driven. Overall, surfactant with greater λ31 gave smaller droplet, greater diffraction efficiency, driving voltage, contrast ratio, and smaller response time. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
A theoretical study has been undertaken to elucidate the three-dimensional pattern formation during holographic polymer-dispersed liquid crystal fabrication employing various optical wave interference techniques. Initially miscible mixtures of nematic liquid crystal and reactive multifunctional monomer with a photosensitive initiator were exposed to geometrically arranged interfering beams of light, producing a spatially dependent intensity distribution within the sample. To mimic the spatio-temporal evolution of periodic photonic structures in three dimensions, the time-dependent Ginzburg-Landau Model C equations, coupled with spatially variant reaction rate equations, have been solved numerically incorporating the local free energy densities pertaining to isotropic mixing, nematic ordering, and network elasticity. The simulated results reveal some key observations during the formation of electrically switchable photonic crystals with few defects. It appears that the network elasticity term exerts profound effects on resultant structures, indicating that photonic crystals with fewer point defects may be fabricated in shorter times. The simulated results are in good qualitative agreement with reported experimental observations in respect of emerged patterns, length and time scales.  相似文献   

15.
A group of 22 polymers have been synthesized to test their suitability for recording holographic gratings. Polyamides, polyimides, polyesters and their combinations were functionalized with pendant azobenzene groups containing single or double N=N. The polymers were studied using a standard degenerate two-wave mixing technique, which enables measurement of light-induced periodic modification of polymer refractive index and absorption coefficient by analysis of the diffracted light. Two qualitatively different configurations of the holographic polarization recording were used, s-s and s-p. The relationship between structural properties of polymer matrix and azobenzene groups and the holographic grating recording kinetics and light diffraction efficiency was investigated.  相似文献   

16.
Polymer network liquid crystal (PNLC) spatial light modulators are attractive for display and photonic applications because they can achieve submillisecond response time while keeping a large phase change. However, their on-state scattering caused by the grain boundary of LC multidomains hinders their applications. In this article, we review recent progress on the development of scattering-free PNLCs extending from short-wavelength infrared to visible region by reducing the domain sizes to ∼200 nm through low temperature curing process. To reduce operation voltage, both transmissive and reflective modes, LC material properties (birefringence and dielectric anisotropy), polymer composition and concentration, and pretilt angle effect are analyzed. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 183–192  相似文献   

17.
The new photopolymers for holographic applications described herein are based on a cross-linked matrix in which the holographic grating is formed by photo-polymerization of guest monomers in an interference pattern of the recording light. Diffusion of monomer, triggered by this photo-polymerization, from the dark to the bright fringes of the interference pattern is the key parameter for creating high modulation in refractive index Δn during hologram recording. This leads to bright visual volume holograms with high diffraction efficiency. The holographic photopolymers are self-processing. After recording the hologram only (incoherent) light exposure is necessary to bleach the final product and fix the hologram. Unlike earlier photopolymers used in holography, these new materials offer the advantages of no chemical or thermal processing combined with low shrinkage and detuning. Additionally, due to good light sensitivity the formation of the holograms is fast and the film obtained after curing is highly transparent, which makes the material suitable for both, reflection and transmission holography.  相似文献   

18.
Transmission gratings of holographic polymer-dispersed liquid crystals (HPDLC) are prepared under controlled reaction conditions by adding various amounts of chain-transfer agent (CTA). The resulting films have a higher gel content with lower cross-link density, less dark reaction, less grating shrinkage with much smoother LC/polymer interfaces, smaller induction period, and fast saturation of diffraction efficiency, which shows a maximum of 95 % with 1 % CTA. An optimum LC content of 35 % is verified on the basis of morphology and reaction kinetics.  相似文献   

19.
A liquid crystal (LC) alignment technique has been developed that allows local control of the polar pretilt angle over the range of 0–90°. This was achieved through the formation of a polymer network localised in the vicinity of the LC cell substrates. The network was formed as a result of in situ UV-induced polymerisation of a photo-reactive monomer added at concentrations of 0.5–1%. Localisation of the polymer network at the LC–substrate boundary was achieved by the application of a high voltage before polymerisation. The resultant pretilt angle was determined by the voltage applied during the polymerisation and/or the duration of the voltage application before the polymerisation step. The desired pretilt angle could be set over a small area of the sample, which allows the fabrication of LC devices with spatially variable optical retardation. Using this method we fabricated a converging lens, a bi-prism, and a phase diffraction grating with resolution greater than 50 lines mm?1.  相似文献   

20.
In this study, the dye-doped polymer dispersed liquid crystals (PDLC) gratings techniques performed by the various research groups or being developed are briefly reviewed. Especially, the electrically switched diffraction and holographic gratings, have attained much attention by various research groups working in the PDLC-related display studies. The fabrication methodologies used for such grating texture, include like the conventional dye-doped PDLC grating, Azo-dye doped PDLC gratings, and lasing techniques etc., adopted for dye-doped PDLC gratings. The useful features and characteristics of their fabrication process of such gratings are discussed. Finally, some of the future perspectives on this particular research field are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号