首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 15 毫秒
1.
The synthesis of three new stereoregular AB-type polyamides based on D -ribono-1,4-lactone, L -arabinose, and D -xylose has been carried out by the active ester polycondensation method. These polyamides were characterized by elemental analysis, IR and NMR spectroscopies, and powder X-ray diffraction. They displayed optical activity and had a pronounced affinity to water, although they were not soluble in this solvent. The polyamide obtained from D -ribono-1,4-lactone was highly crystalline and yielded films with spherulitic texture. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 3645–3653, 1997  相似文献   

2.
Stereoregular polyamides containing two chiral backbone carbons in the repeating unit were prepared by polycondensation of bis(pentachlorophenyl) 2,3-O-methylene-L -tartrate with 1,9 and 1,12-alcanediamines activated as N,N′-bis(trimethylsilyl) derivatives. The polymers were characterized by elemental analysis, IR, and 1H-NMR spectroscopy, and differential scanning calorimetry. Both viscosimetry and GPC were used to estimate the molecular weights which ranged between 6000 and 44000. These polytartaramides were readily soluble in chloroform, displayed moderate optical activity in solution, and formed highly crystalline films.  相似文献   

3.
1,6-Diamantane dicarboxvlic acyl chloride ( I ) was used as a monomer with various aromatic diamines to synthesize polyamides by interfacial polycondensation and solution polycon-densation. The polyamides prepared by interfacial polycondensation had inherent viscosities between 0.38 and 0.15 dL/g. The polyamides prepared by solution polycondensation had inherent viscosities between 0.62 and 0.25 dL/g. The polyamides IIIa prepared by solution polycondensation showed the main melting transition at 380°C by dynamic mechanical analysis. In addition, it was quite temperature-stable and maintained good mechanical properties (G′?108 Pa) up to high temperatures close to the main transition well above 350°C. The polyamide IIIA had a tensile strength of 35 MPa, elongations to break of 10%, and initial modulus of 0.8 GPa. Some of the polyamides were soluble in NMP, DMAc, and DMSO, depending on soft segment moiety of diamine ( II ). The polyamides prepared by interfacial polycondensation have a greater tendency to form crystal than those prepared by solution polycondensation, as evidenced by x-ray diffraction studies. These polyamides had glass transition temperatures in the 270–300°C range, and 5% weight loss temperatures up to 435°C in nitrogen. © 1995 John Wiley & Sons, Inc.  相似文献   

4.
2,6-Bis(4-aminophenoxy)naphthalene (2,6-BAPON) was synthesized in two steps from the condensation of 2,6-dihydroxynaphthalene with p-chloronitrobenzene in the presence of potassium carbonate, giving 2,6-bis(4-nitrophenoxy)naphthalene, followed by hydrazine hydrate/Pd—C reduction. A series of new polyamides were synthesized by the direct polycondensation of 2,6-BAPON with various aromatic dicarboxylic acids in the N-methyl-2-pyrrolidone (NMP) solution containing dissolved metal salts such as CaCl2 or LiCl using triphenyl phosphite and pyridine as condensing agents. The polymers were obtained in quantitative yields with inherent viscosities of 0.62–2.50 dL/g. Most of the polymers were soluble in aprotic dipolar solvents such as N,N-dimethylacetamide (DMAc) and NMP, and they could be solution cast into transparent, flexible, and tough films. The casting films had yield strengths of 84–105 MPa, tensile strengths of 68–95 MPa, elongations at break of 8–36%, and tensile moduli of 1.4–2.1 GPa. The glass transition temperatures of the polyamides were in the range 155–225°C, and their 10% weight loss temperatures were above 505°C in nitrogen and above 474°C in air. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 2147–2156, 1997  相似文献   

5.
A new bis(phenoxy)naphthalene-containing diamine, 1,6-bis(4-aminophenoxy)naphthalene, was synthesized in two steps from the condensation of 1,6-dihydroxynaphthalene with p-chloronitrobenzene in the presence of potassium carbonate, giving 1,6-bis(4-nitrophenoxv)naphthalene, followed by hydrazine hydrate/Pd—C reduction. A series of polyamides were synthesized by the direct polycondensation of the diamine with various aromatic dicarboxylic acids in the N-methyl-2-pyrrolidone (NMP) solution containing dissolved metal salts such as CaCl2 or LiBr using triphenyl phosphite and pyridine as condensing agents. The polymers were obtained in quantitative yield with inherent viscosities of 0.78–3.72 dL/g. Most of the polymers were soluble in aprotic solvents such as N,N-dimethylacetamide (DMAc), N,N-dimethylformamide (DMF), NMP, and they could be solution-cast into transparent, flexible and tough films. The casting films had tensile strength of 102–175 MPa, elongation at break of 8–42%, and tensile modulus of 2.4–3.8 GPa. The polymers derived from rigid dicarboxylic acids such as terephthalic acid and 4,4′-biphenyldicarboxylic acid exhibited some crystalline characteristics. The glass transition temperatures of the polyamides were in the range of 238–337°C, and their 10% weight loss temperatures were above 487°C in nitrogen and above 438°C in air. © 1995 John Wiley & Sons, Inc.  相似文献   

6.
A series of novel bis(phenoxy)naphthalene-containing polyamides having inherent viscosity up to 2.02 dL/g were synthesized by the direct polycondensation of the diamine 1,7-bis(4-aminophenoxy)naphthalene with various aromatic dicarboxylic acids in N-methyl-2-pyrrolidone (NMP) using triphenyl phosphite and pyridine as condensing agents. Most of the polyamides could be readily dissolved in polar aprotic solvents such as N,N-dimethylacetamide and NMP, and could be solution-cast into transparent, flexible, and tough films. These polymers had glass transition temperatures in the range of 139–263°C, and 10% weight loss temperatures in nitrogen and air were above 499 and 484°C, respectively. © 1996 John Wiley & Sons, Inc.  相似文献   

7.
A new bis(phenoxy)naphthalene-containing diamine, 1,5-bis(4-aminophenoxy)naphthalene, was synthesized in two steps from the condensation of 1,5-dihydroxy-naphthalene with p-chloronitrobenzene in the presence of potassium carbonate, giving 1,5-bis(4-nitrophenoxy)naphthalene, followed by hydrazine hydrate/Pd? C reduction. A series of polyamides and copolyamides were synthesized by the direct polycondensation of the diamine with various aromatic dicarboxylic acids or with mixed dicarboxylic acids in N-methyl-2-pyrrolidone (NMP) using triphenyl phosphite and pyridine as condensing agents. The polymers having inherent viscosity of 0.81–1.25 dL/g were obtained in quantitative yield. Most of the polymers were generally soluble in aprotic solvent such as N,N-dimethylacetamide, N-methyl-2-pyrrolidone, etc. The polymers derived from rigid dicarboxylic acids such as terephthalic acid, naphthalene dicarboxylic acid, and 4,4′-biphenyldicarboxylic acid exhibited crystalline patterns. Glass transition temperatures of polymers were in the range of 230–360°C, and 10% weight loss temperatures in nitrogen and air were above 492 and 470°C, respectively. © 1993 John Wiley & Sons, Inc.  相似文献   

8.
Novel aromatic polyamides, having inherent viscosities of 0.76-2.31 dL/g, were synthesized by the low temperature solution polycondensation of a new highly phenylated diamine monomer having an imidazolinone group, 1,3-bis(4-aminophenyl)-4,5-diphenylimidazoline-2-one (TPIDA), with various aromatic diacid chlorides. All the polymers were amorphous, and most of the polyamides were readily soluble in organic solvents such as N-methyl–2-pyrrolidone, N,N-dimethylacetamide (DMAc), and m-cresol. Flexible and tough films could be prepared from the DMAc solutions of these soluble aromatic polyamides. The glass transition temperatures and 10% weight loss temperatures under nitrogen of the polyamides were in the range of 275–315°C and 430–505°C, respectively. © 1995 John Wiley & Sons, Inc.  相似文献   

9.
The diamine 1,4-bis(4-aminophenoxy)-2,5-di-tert-butylbenzene, containing symmetric, bulky di-tert-butyl substituents and a flexible ether unit, was synthesized and used to prepare a series of polyamides by the direct polycondensation with various aromatic dicarboxylic acids in N-methyl-2-pyrrolidinone (NMP) using triphenyl phosphite and pyridine as condensing agents. All the polymers were obtained in quantitative yields with inherent viscosities of 0.32–1.27 dL g−1. Most of these polyamides, except II a , II d , and II e , showed an amorphous nature and dissolved in polar solvents and less polar solvents. Polyamides derived from 4,4′-sulfonyldibenzoic acid, 4,4′-(hexafluoro-isopropylidene)dibenzoic acid, and 5-nitroisophthalic acid were even soluble in a common organic solvent such as THF. Most polyamide films could be obtained by casting from their N,N-dimethylacetamide (DMAc) solutions. The polyamide films had a tensile strength range of 49–78 MPa, an elongation range at break of 3–5%, and a tensile modulus range of 1.57–2.01 GPa. These polyamides had glass transition temperatures ranging between 253 and 276°C, and 10% mass loss temperatures were recorded in the range 402–466°C in nitrogen atmosphere. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1069–1074, 1998  相似文献   

10.
1,2-Bis(4-aminophenoxy)benzene was synthesized in two steps by the preparation of 1,2-bis(4-itrophenoxy)benzene from 1,2-dihydroxybenzene (catechol) and p-chloronitrobenzene and subsequent reduction with a 10% Pd-C catalyst and hydrazine hydrate. Aromatic polyamides with an inherent viscosity in the range of 1.08–2.00 dL/g were prepared by the direct polycondensation of this diamine with various aromatic dicarboxylic acids in N-methyl-2-pyrrolidone (NMP) using triphenyl phosphite and pyridine as condensing agents. Most of the polymers formed were soluble in aprotic solvents such as NMP and N,N-methylacetamide (DMAc), and afforded transparent, flexible, and tough films upon casting from DMAc solutions. Most of the cast films showed obvious yield points in their stress-strain curves and had tensile strength among 64–89 MPa, elongation at break among 5–23%, and initial modulus in 1.7–2.5 GPa. The glass transition temperatures (Tg) of these polymers were in the range of 207–278°C, and the 10% weight loss temperatures were recorded above 475°C in nitrogen and above 452°C in air. © 1995 John Wiley & Sons, Inc.  相似文献   

11.
Stereoregular, enantiomerically pure, chiral polyamides of the –AB– type, containing a natural (glycine) and a synthetic [(S)-5-amino-4-methoxypentanoic acid (AMP)] component have been prepared by the active ester polycondensation method. Thus, polyamide 7 was obtained by polycondensation of the conveniently activated H2NGly–AMPCO2R unit ( 6 ). In this reaction, 7 appeared accompanied by a considerable amount of cyclic (Gly–AMP)2 ( 8 ), which makes the isolation and purification of 7 difficult. The formation of cyclic byproducts could be avoided by preparing and polymerizing the oligoamide H2NGly–AMP–AMPCO2R ( 11 ), which has the terminal carboxyl group activated as the pentachlorophenyl ester. The resulting polyamide ( 12 ) was obtained in 85% yield and free of macrolactams, such as 8 . The new polyamides 7 and 12 were characterized by elemental analysis and infrared and 1H- and 13C-nuclear magnetic resonance spectroscopies. Thermal studies revealed that 12 is crystalline and yields films with spherulitic texture by slow evaporation of formic acid solutions. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 2741–2748, 1998  相似文献   

12.
This study includes the synthesis of graft copolymer (GG-g-PAPA) from N-Acryloyl-L-phenylalanine (APA) and guar gum through free radical polymerization. Then, the novel pH sensitive GG-g-PAPA-cl-(PHEA-co-PAMPS) [GGAH] polymeric hydrogels were synthesized by employing free radical cross-linking polymerization using graft copolymer, 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS), and 2-hydroxy ethyl acrylate (HEA). The GGAH hydrogels were characterized using FTIR and SEM. Swelling studies of GGAH hydrogels were performed in distilled water, pH 1.2, and pH 7.4 solutions. The network and swelling kinetic parameters of GGAH hydrogels are also calculated.  相似文献   

13.
Block copolymers of poly(glycidol)‐b‐poly(4‐vinylpyridine) were obtained by ATRP of 4‐vinylpyridine initiated by ω‐(2‐chloropropionyl) poly(glycidol) macroinitiators. By changing the monomer/macroinitiator ratio in the synthesis polymers with varied P4VP/PGl molar ratio were obtained. The obtained block copolymers showed pH sensitive solubility. It was found that the linkage of a hydrophilic poly(glycidol) block to a P4VP influenced the pKa value of P4VP. DLS measurements showed the formation of fully collapsed aggregates exceeding pH 4.7. Above this pH values the collapsed P4VP core of the aggregates was stabilized by a surrounding hydrophilic poly(glycidol) corona. The size of the aggregates depended significantly upon the composition of the block copolymers. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1782–1794, 2009  相似文献   

14.
A series of aregic poly(ester amide)s (a‐PEAT6) with ester/amide ratios (a : b) varying from 1 : 19 to 1 : 2 were prepared with L ‐tartaric acid, 6‐aminohexanol, and 1,6 hexanediamine as the starting materials. Polycondensation in a solution of the diamine with mixtures of pentachlorophenyl‐activated di‐O‐methyl‐L ‐tartaric and 6‐aminohexyl‐di‐O‐methyl‐L ‐tartaric acids led to a‐PEAT6(a : b), with the a : b ratio determined by the composition of the feed. The newly synthesized poly(ester amide)s were characterized by elemental analysis, size exclusion chromatography, and IR and NMR spectroscopy. They had number‐average molecular weights between 25,000 and 45,000 and were highly crystalline, showing melting temperatures ranging from 100 to 230 °C and glass‐transition temperatures oscillating between 50 and 100 °C. The thermal degradation of a‐PEAT6(a : b) began above 200 °C and concluded with a final weight loss between 60 and 90% of the initial mass. The process evolved with the formation of cyclic tartarimide units and extensive main‐chain scissions. The degradation mechanism is discussed in relation to the chemical composition and microstructure of the polymers. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2687–2696, 2000  相似文献   

15.
16.
A series of new copoly(carbonate-ester)s derived from p-hydroxy cinnamic acid (p-HCA) and 2,2-bis-(4-hydroxyphenyl) propane (Bisphenol A, BPA) was synthesized by an interfacial polymerization process. Films of these unsaturated copolymers were exposed to UV-light and sunlight to induce crosslinking. The resulting crosslinked films were insoluble in strong polycarbonate solvents such as dichloromethane and chloroform. The initial optical properties of the film are similar to bisphenol A polycarbonate (BPA-PC) and reduced on exposure to UV and sunlight with time. The Tg’s of copolymers are in the range of BPA-PC and thermal stability is lower than BPA-PC.

The chemical resistance and the dimensional stability of the crosslinked systems are expected to be superior to the ones from BPA-PC. Moreover, the double bond functionality in the p-HCA-containing resin could potentially be used to graft acrylates or other unsaturated monomers onto the copoly (carbonate ester)-backbone.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号