首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An ultrafast liquid chromatographic bioanalytical method was developed and validated for the determination of vilazodone in Wistar rat serum. Principles of quality by design were implemented for enhancing the bioanalytical liquid–liquid extraction of vilazodone from rat serum. A Box–Behnken design was utilized in the studies by selecting extraction time, centrifugation speed, and vortex time as the critical method variables for evaluating their effect on the analytical attribute, i.e., %recovery of vilazodone. Chromatographic separation was achieved within a run time of 10?min using a C-18 column and mobile phase comprising of methanol:phosphate buffer of pH 7 (85:15 v/v) flowing at 1.5?mL/min. Photodiode array detection was performed at 242?nm. Results of validation studies were satisfactory. The method was linear over a concentration of 100–2,000?ng/mL with acceptable accuracy and precision. Limits of detection and quantitation for the developed method were 50 and 100?ng/mL, respectively. This QbD-based approach was found suitable for routine bioanalysis of vilazodone in the biological matrix.  相似文献   

2.
The present studies describe the systematic quality by design (QbD)‐oriented development and validation of a simple, rapid, sensitive and cost‐effective reversed‐phase HPLC bioanalytical method for nevirapine in rat plasma. Chromatographic separation was carried out on a C18 column using isocratic 68:9:23% v/v elution of methanol, acetonitrile and water (pH 3, adjusted by orthophosphoric acid) at a flow rate of 1.0 mL/min using UV detection at 230 nm. A Box–Behnken design was applied for chromatographic method optimization taking mobile phase ratio, pH and flow rate as the critical method parameters (CMPs) from screening studies. Peak area, retention time, theoretical plates and peak tailing were measured as the critical analytical attributes (CAAs). Further, the bioanalytical liquid–liquid extraction process was optimized using an optimal design by selecting extraction time, centrifugation speed and temperature as the CMPs for percentage recovery of nevirapine as the CAA. The search for an optimum chromatographic solution was conducted through numerical desirability function. Validation studies performed as per the US Food and Drug Administration requirements revealed results within the acceptance limit. In a nutshell, the studies successfully demonstrate the utility of analytical QbD approach for the rational development of a bioanalytical method with enhanced chromatographic separation and recovery of nevirapine in rat plasma. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
A sensitive and rapid method based on alcohol‐assisted dispersive liquid–liquid microextraction followed by high‐performance liquid chromatography for the determination of fluoxetine in human plasma and urine samples was developed. The effects of six parameters on the extraction recovery were investigated and optimized utilizing Plackett–Burman design and Box–Benken design, respectively. According to the Plackett–Burman design results, the volume of disperser solvent, extraction time, and stirring speed had no effect on the recovery of fluoxetine. The optimized conditions included a mixture of 172 μL of 1‐octanol as extraction solvent and 400 μL of methanol as disperser solvent, pH of 11.3 and 0% w/v of salt in the sample solution. Replicating the experiment in optimized condition for five times, gave the average extraction recoveries equal to 90.15%. The detection limit of fluoxetine in human plasma was obtained 3 ng/mL, and the linearity was in the range of 10–1200 ng/mL. The corresponding values for human urine were 4.2 ng/mL with the linearity range from 10 to 2000 ng/mL. Relative standard deviations for intra and inter day extraction of fluoxetine were less than 7% in five measurements. The developed method was successfully applied for the determination of fluoxetine in human plasma and urine samples.  相似文献   

4.
A highly sensitive and rapid bioanalytical method has been developed and validated for the estimation of indomethacin in rat plasma with liquid chromatography coupled to tandem mass spectrometry with electrospray ionization in the positive‐ion mode. The assay procedure involves a simple liquid–liquid extraction of indomethacin and phenacetin (internal standard, IS) from rat plasma with acetonitrile. Chromatographic separation was achieved with 0.2% formic acid–acetonitrile (25:75, v/v) at a flow rate of 0.60 mL/min on an Atlantis dC18 column with a total run time 3.0 min. The MS/MS ion transitions monitored were 357.7 → 139.1 for indomethacin and 180.20 → 110.10 for IS. Method validation and pharmacokinetic study plasma analysis were performed as per FDA guidelines and the results met the acceptance criteria. The lower limit of quantitation achieved was 0.51 ng/mL and the linearity was observed from 0.51 to 25.5 ng/mL. The intra‐ and inter‐day precisions were in the range of 1.00–10.2 and 5.88–9.80%, respectively. This novel method has been applied to an oral pharmacokinetic study in rats. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
A green and robust reverse-phase liquid chromatographic method has been developed for the determination of fenoverine (FEN), by applying combined principles of green analytical chemistry and quality by design approaches on a Spherisorb C18 column (150?×?4.6?mm, 3?µm) with UV detection at 262?nm. A two level fractional factorial design (2^7-3) Res IV was used for screening of influential chromatographic factors. The critical method parameters actively affecting critical quality attributes (CQAs) were identified and further optimized using Box–Behnken design. The predicted optimum assay conditions comprised of methanol and ammonium acetate buffer 20?mM, in an extent of 81:19% v/v individually having a flow rate of 1.0?mL/min with a column oven temperature of 33°C. The drug was stressed in hydrolytic, oxidative, reductive, thermal, and photolytic conditions. The developed method was validated successfully. The detector response was linear in the concentration of 0.5–160?µg/mL with a limit of detection (LOD) and limit of quantitation (LOQ) as 0.1 and 0.3?µg/mL, respectively. The % recovery was found to be 99.7%. The analytical method volume intensity value for developed method was 45?mL and the environment assessment tool (EAT) score was 41.07. The method is simple, environmentally benign, rapid, and robust for the determination of FEN in bulk and in its dosage form.  相似文献   

6.
A novel, simple, specific, sensitive and reproducible high‐performance liquid chromatography (HPLC) assay method has been developed and validated for the estimation of abiraterone (ART) in rat plasma. The analytical procedure involves extraction of ART and diclofenac (internal standard, IS) from rat plasma with a simple liquid–liquid extraction process. The chromatographic analysis was performed on a Waters Alliance system with a Betasil C18 column maintained at ambient room temperature and an isocratic mobile phase [acetonitrile–water–10 mm potassium dihydrogen phosphate (pH 3.0), 55:5:40, v/v/v] at a flow rate of 1.00 mL/min with a total run time of 10 min. The eluate was monitored using an UV detector set at 255 nm. Method validation was performed as per FDA guidelines and the results met the acceptance criteria. The calibration curve was linear over a concentration range of 93.4–3251 ng/mL (r2 = 0.997). The intra‐ and inter‐day precisions were 0.56–4.98 and 3.03–7.18, respectively, in rat plasma. The validated HPLC method was successfully applied to a pharmacokinetic study of ART in rats. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
A rapid, sensitive and specific LC‐MS/MS method was developed and validated for quantifying chlordesmethyldiazepam (CDDZ or delorazepam), the active metabolite of cloxazolam, in human plasma. In the analytical assay, bromazepam (internal standard) and CDDZ were extracted using a liquid‐liquid extraction (diethyl‐ether/hexane, 80/20, v/v) procedure. The LC‐MS/MS method on a RP‐C18 column had an overall run time of 5.0 min and was linear (1/x weighted) over the range 0.5–50 ng/mL (R > 0.999). The between‐run precision was 8.0% (1.5 ng/mL), 7.6% (9 ng/mL), 7.4% (40 ng/mL), and 10.9% at the low limit of quantification—LLOQ (0.500 ng/mL). The between‐run accuracies were 0.1, –1.5, –2.7 and 8.7% for the above mentioned concentrations, respectively. All current bioanalytical method validation requirements (FDA and ANVISA) were achieved and it was applied to the bioequivalence study (Cloxazolam—test, Eurofarma Lab. Ltda and Olcadil®— reference, Novartis Biociências S/A). The relative bioavailability between both formulations was assessed by calculating individual test/reference ratios for Cmax, AUClast and AUC0‐inf. The pharmacokinetic profiles indicated bioequivalence since all ratios were as proposed by FDA and ANVISA. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
Tedizolid (TDZ) is a novel oxazolidinone class antibiotic, indicated for the treatment of acute bacterial skin and skin structure infections in adults. In this study a highly sensitive UPLC‐MS/MS assay was developed and validated for the determination of TDZ in rat plasma using rivaroxaban as an internal standard (IS). Both TDZ and IS were separated on an Acquity UPLC BEH? C18 column using an isocratic mobile phase comprising of acetonitrile–20 mm ammonium acetate (85:15, v/v), eluted at 0.3 mL/min flow rate. The plasma sample was processed by liquid liquid extraction technique using ethyl acetate as an extracting agent. The analyte and IS were detected in positive mode using electrospray ionization source. The precursor to product ion transitions at m/z 371.09 > 343.10 for TDZ and m/z 435.97 > 144.94 for IS were used for the quantification in multiple reaction monitoring mode. The calibration curve was linear in the concentration range of 0.74–1500 ng/mL and the lower limit of quantification was 0.74 ng/mL only. The developed assay was validated following standard guidelines for bioanalytical method validation (US Food and Drug Administration) and all the validation results were within the acceptable limits. The developed assay was successfully applied into a pharmacokinetic study in rats. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
A novel, simple, specific, sensitive and reproducible high‐performance liquid chromatography assay method has been developed and validated for the estimation of Orteronel in rat plasma. The bioanalytical procedure involves extraction of Orteronel and phenacetin (internal standard) from rat plasma with a simple liquid–liquid extraction process. The chromatographic analysis was performed on a Waters Alliance system using a gradient mobile phase conditions at a flow rate of 1 mL/min and a C18 column maintained at ambient room temperature. The eluate was monitored using a photodiode array detector set at 242. Orteronel and internal standard eluted at 4.8 and 6.2 min, respectively and the total run time was 9 min. Method validation was performed as per US Food and Drug Administration guidelines and the results met the acceptance criteria. The calibration curve was linear over a concentration range of 100–3149 ng/mL (r2 = 0.995). The intra‐ and inter‐day precisions were in the ranges of 0.31–7.87 and 3.97–6.35, respectively, in rat plasma. The validated HPLC method was successfully applied to a pharmacokinetic study of Orteronel in rats. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
A high‐throughput LC–MS/MS bioanalytical method was developed and validated for the determination of hydrocortisone in mouse serum via supported liquid extraction (SLE) in a 96‐well plate format. Although sample extracts from SLE result in similar matrix effects compared with conventional liquid–liquid extraction (LLE), greater analyte extraction recovery and much higher analysis throughput for the quantitative analysis of hydrocortisone in mouse serum were obtained. The current LC‐MS/MS method was validated for a concentration range of 2.00–2000 ng/mL for hydrocortisone using a 0.100 mL volume of mouse serum. The intra‐ and inter‐day precision and accuracy of the quality control samples at low, medium and high concentration levels showed ≤12.9% CV and ?3.4–6.2% bias for the analyte in mouse serum. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
Chloropropanols are processing toxicants with a potential risk to human health due to the increased intake of processed foods. A rapid and efficient method for the determination of three chloropropanols in human plasma was developed using ultrasound‐assisted dispersive liquid–liquid microextraction. The method involved derivatization and extraction in one step followed by gas chromatography with tandem mass spectrometry analysis. Parameters affecting extraction, such as sample pH, ionic strength, type and volume of dispersive and extraction solvents were optimized by response surface methodology using a pentagonal design. The linear range of the method was 5–200 ng/mL for 1,3‐dichloro‐2‐propanol, 10–200 ng/mL for 2,3‐dichloro‐2‐propanol and 10–400 ng/mL for 3‐chloropropane‐1,2‐diol with the determination coefficients between 0.9989 and 0.9997. The limits of detection were in the range of 0.3–3.2 ng/mL. The precision varied from 1.9 to 10% relative standard deviation (n = 9). The recovery of the method was between 91 and 101%. Advantages such as low consumption of organic solvents and short time of analysis make the method suitable for the biomonitoring of chloropropanols.  相似文献   

12.
A novel, simple, specific, sensitive and reproducible high‐performance liquid chromatography (HPLC) assay method has been developed and validated for the estimation of tofacitinib in rat plasma. The bioanalytical procedure involves extraction of tofacitinib and itraconazole (internal standard, IS) from rat plasma with a simple liquid–liquid extraction process. The chromatographic analysis was performed on a Waters Alliance system using a gradient mobile phase conditions at a flow rate of 1.0 mL/min and C18 column maintained at 40 ± 1 °C. The eluate was monitored using an UV detector set at 287 nm. Tofacitinib and IS eluted at 6.5 and 8.3 min, respectively and the total run time was 10 min. Method validation was performed as per US Food and Drug Administration guidelines and the results met the acceptance criteria. The calibration curve was linear over a concentration range of 182–5035 ng/mL (r2 = 0.995). The intra‐ and inter‐day precisions were in the range of 1.41–11.2 and 3.66–8.81%, respectively, in rat plasma. The validated HPLC method was successfully applied to a pharmacokinetic study in rats. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
A simple, specific, sensitive and reproducible high‐performance liquid chromatography (HPLC) assay method has been developed and validated for the estimation of odanacatib in rat and human plasma. The bioanalytical procedure involves extraction of odanacatib and itraconazole (internal standard, IS) from a 200 μL plasma aliquot with simple liquid–liquid extraction process. Chromatographic separation was achieved on a Symmetry Shield RP18 using an isocratic mobile phase at a flow rate of 0.7 mL/min. The UV detection wave length was 268 nm. Odanacatib and IS eluted at 5.5 and 8.6 min, respectively with a total run time of 10 min. Method validation was performed as per US Food and Drug Administration guidelines and the results met the acceptance criteria. The calibration curve was linear over a concentration range of 50.9–2037 ng/mL (r2 = 0.994). The intra‐ and inter‐day precisions were in the range of 2.06–5.11 and 5.84–13.1%, respectively, in rat plasma and 2.38–7.90 and 6.39–10.2%, respectively, in human plasma. The validated HPLC method was successfully applied to a pharmacokinetic study in rats. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
A simple, sensitive and cost-effective HPLC-UV bioanalytical method for determination of lopinavir (LPV) in rat and human plasma was developed and validated. The plasma sample preparation procedure includes a combination of protein precipitation using cold acetonitrile and liquid–liquid extraction with n-hexane–ethyl acetate (7:3, v/v). A good chromatographic separation was achieved with a Phenomenex Gemini column (C18, 150 mm × 2.0 mm, 5 μm) at 40°C with gradient elution, at 211 nm. Calibration curves were linear in the range 10–10,000 ng/mL, with a lower limit of quantification of 10 ng/mL using 100 μL of plasma. The accuracy and precision in all validation experiments were within the criteria range set by the guidelines of the Food and Drug Administration. This method was successfully applied to a preliminary pharmacokinetic study in rats following an intravenous bolus administration of LPV. Moreover, the method was subsequently fully validated for human plasma, allowing its use in therapeutic drug monitoring (TDM). In conclusion, this novel, simple and cost-efficient bioanalytical method for determination of LPV is useful for pharmacokinetic and drug delivery studies in rats, as well as TDM in human patients.  相似文献   

15.
A fast and simple liquid chromatography–electrospray ionization tandem mass spectrometry method for determination of indapamide in human whole blood was developed and validated. The sample extraction of indapamide from human whole blood was achieved using automated solid‐phase extraction. Chromatographic separation was performed on Kinetex C18 column (100 × 2.1 mm, 1.7 µm particle size) using acetonitrile and 2 mm ammonium formate in ratio 90:10 (v/v) as a mobile phase. The mass spectrometer was operated in the multiple reaction monitoring mode using positive electrospray ionization for indapamide and the internal standard (zolpidem tartarate). The total run time was 2.5 min. The present method was found to be linear in the concentration range of 1–50 ng/mL with the coefficient of determination 0.9987. The absolute recoveries of indapamide were 90.51–93.90%. The method was validated according the recommendations for validation of bioanalytical methods of European Medicines Agency guideline and was successfully used to analyze human whole blood samples for application in a pharmacokinetic study. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
A rapid and simple method for the extraction and preconcentration of ceftazidime in aqueous samples has been developed using dispersive liquid–liquid microextraction followed by high‐performance liquid chromatography analysis. The extraction parameters, such as the volume of extraction solvent and disperser solvent, salt effect, sample volume, centrifuge rate, centrifuge time, extraction time, and temperature in the dispersive liquid–liquid microextraction process, were studied and optimized with the experimental design methods. Firstly, for the preliminary screening of the parameters the taguchi design was used and then, the fractional factorial design was used for significant factors optimization. At the optimum conditions, the calibration curves for ceftazidime indicated good linearity over the range of 0.001–10 μg/mL with correlation coefficients higher than the 0.98, and the limits of detection were 0.13 and 0.17 ng/mL, for water and urine samples, respectively. The proposed method successfully employed to determine ceftazidime in water and urine samples and good agreement between the experimental data and predictive values has been achieved.  相似文献   

17.
A simple, sensitive and specific ultra‐performance liquid chromatography–tandem mass spectrometry (UPLC‐MS/MS) method was developed and validated to determine the concentrations of 7‐hydroxymitragynine in rat plasma. Following a single‐step liquid–liquid extraction of plasma samples using chloroform, 7‐hydroxymitragynine and the internal standard (tryptoline) were separated on an Acquity UPLCTM BEH C18 (1.7 µm, 2.1 × 50 mm) column using an isocratic elution at a flow rate of 0.2 mL/min. The mobile phase consisted of 0.1% acetic acid in water and 0.1% acetic acid in acetonitrile (10:90, v/v). The run time was 2.5 min. The analysis was carried out under the multiple reaction‐monitoring mode using positive electrospray ionization. Protonated ions [M + H]+ and their respective product ions were monitored at the following transitions: 415 → 190 for 7‐hydroxymitragynine and 173 → 144 for the internal standard. The calibration curve was linear over the range of 10–4000 ng/mL (r2 = 0.999) with a lower limit of quantification of 10 ng/mL. The extraction recoveries ranged from 62.0 to 67.3% at concentrations of 20, 600 and 3200 ng/mL). Intra‐ and inter‐day assay precisions (relative standard deviation) were <15% and the accuracy was within 96.5–104.0%. This validated method was successfully applied to quantify 7‐hydroxymitragynine in rat plasma following intravenous administration. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
A rapid, selective, and sensitive liquid chromatography–tandem mass spectrometry method was developed and validated for the simultaneous determination of unbound sunitinib and its active metabolite N‐desethyl sunitinib in plasma. Plasma and post‐dialysis buffer samples were extracted using a liquid–liquid extraction procedure with acetonitrile–n‐butylchloride (1:4, v/v). Chromatographic separation was achieved on a Waters X‐Terra® MS RP18 column with a mobile phase consisting of acetonitrile and water (60:40, v/v) containing formic acid (0.1%, v/v) using an isocratic run, at a flow‐rate of 0.2 mL/min. Analytes were detected by electrospray tandem mass spectrometry in the selective reaction monitoring mode. Linear calibration curves were generated over the ranges 0.1–100 and 0.02–5 ng/mL for sunitinib and 0.2–200 and 0.04–10 ng/mL for N‐desethyl sunitinib in plasma and in phosphate‐buffered solution, respectively. The values for both within‐day and between‐day precision and accuracy were well within the generally accepted criteria for analytical methods. The analytical range was sufficient to determine the unbound and total concentrations of both analytes. The method was applied for measurement unbound concentrations in addition to total concentrations of sunitinib and its metabolite in plasma of a cancer patient receiving 50 mg daily dose. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
To evaluate the bioavailability and pharmacokinetic profiles of two novel galantamine formulations as medical countermeasure products, an ultra‐performance liquid chromatography–single quadrupole mass spectrometry (UPLC–MS) method was developed and validated for quantifying galantamine in guinea pig plasma using solid‐phase extraction with a mixed mode strong cation exchange reversed‐phase cartridge. Chromatographic separation was achieved on a Waters Acquity UPLC BEH C18 column maintained at 40°C. The mobile phases were solution A, acetonitrile–water, 5:95 (v/v) and solution B, acetonitrile–water 90:10 (v/v), both containing 2 mM ammonium formate and 0.2% formic acid. The mobile phase was delivered utilizing a 3 min gradient program start with 95%A–5%B at a flow rate of 0.6 mL/min. The analyte and internal standard, galantamine‐d3, were detected by selected ion monitoring mode on a Waters 3100 single quadrupole mass spectrometer with positive electrospray ionization. The method was validated according to the US Food and Drug Administration bioanalytical guidance. The method was selective and was linear over the analytical range of 2–2000 ng/mL. Accuracy and precision were acceptable with intra‐ and inter‐day accuracies between 96.8 and 101% and precisions (RSD) <4.88%. The method was successfully implemented to measure galantamine plasma levels in a series of pre‐clinical bioavailability studies for the evaluation of novel galantamine formulations.  相似文献   

20.
A simple and sensitive method for the simultaneous determination of eight parabens in human plasma and urine samples was developed. The samples were preconcentrated using dispersive liquid–liquid microextraction based on the solidification of floating organic drops and determined by high‐performance liquid chromatography with ultraviolet detection. The influence of variables affecting the extraction efficiency was investigated and optimized using Placket–Burman design and Box–Behnken design. The optimized values were: 58 μL of 1‐decanol (as extraction solvent), 0.65 mL methanol (as disperser solvent), 1.5% w/v NaCl in 5.0 mL of sample solution, pH 10.6, and 4.0 min centrifugation at 4000 rpm. The extract was injected into the high‐performance liquid chromatography system for analysis. Under the optimum conditions, the linear ranges for eight parabens in plasma and urine were 1.0–1000 ng/mL, with correlation coefficients above 0.994. The limit of detection was 0.2–0.4 and 0.1–0.4 ng/mL for plasma and urine samples, respectively. Relative recoveries were between 80.3 and 110.7%, while relative standard deviations were less than 5.4%. Finally, the method was applied to analyze the parabens in 98 patients of primary breast cancer. Results showed that parabens existed widely, at least one paraben detected in 96.9% (95/98) of plasma samples and 98.0% (96/98) of urine samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号