首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
If A is a real symmetric matrix and P is an orthogonal projection onto a hyperplane, then we derive a formula for the Moore-Penrose inverse of PAP. As an application, we obtain a formula for the Moore-Penrose inverse of an Euclidean distance matrix (EDM) which generalizes formulae for the inverse of a EDM in the literature. To an invertible spherical EDM, we associate a Laplacian matrix (which we define as a positive semidefinite n × n matrix of rank n − 1 and with zero row sums) and prove some properties. Known results for distance matrices of trees are derived as special cases. In particular, we obtain a formula due to Graham and Lovász for the inverse of the distance matrix of a tree. It is shown that if D is a nonsingular EDM and L is the associated Laplacian, then D−1 − L is nonsingular and has a nonnegative inverse. Finally, infinitely divisible matrices are constructed using EDMs.  相似文献   

2.
Normal matrices in which all submatrices are normal are said to be completely normal. We characterize this class of matrices, determine the possible inertias of a particular completely normal matrix, and show that real matrices in this class are closed under (general) Schur complementation. We provide explicit formulas for the Moore–Penrose inverse of a completely normal matrix of size at least four. A result on irreducible principally normal matrices is derived as well.  相似文献   

3.
In this paper, we consider the conjugate-Toeplitz (CT) and conjugate-Hankel (CH) matrices. It is proved that the inverse of these special matrices can be expressed as the sum of products of lower and upper triangular matrices. Firstly, we get access to the explicit inverse of conjugate-Toeplitz matrix. Secondly, the decomposition of the inverse is obtained. Similarly, the formulae and the decomposition on inverse of conjugate-Hankel are provided. Thirdly, the stability of the inverse formulae of CT and CH matrices are discussed. Finally, examples are provided to verify the feasibility of the algorithms provided in this paper.  相似文献   

4.
设R是2为单位的局部环.研究了R上三个两两可换的n阶非零幂等矩阵的线性组合广义逆之间的包含关系,确定了R上一类特殊矩阵广义逆的列表算法.利用这种列表算法和相关的矩阵理论,得到了这些矩阵线性组合广义逆之间的包含关系的充要条件,推广了矩阵自反广义逆的逆反律的相关结果.  相似文献   

5.
基于Schmidt正交化过程获得了一种计算逆矩阵的新方法.对于可逆矩阵A,有Q=MA,其中Q是酉矩阵,M是下三角矩阵.本文直接从Schmidt规范正交化出发,获得下三角矩阵M的计算公式,从而求得逆矩阵A-1=QHM=AHMTM.  相似文献   

6.
This paper deals with the modern development of matrices, linear transformations, quadratic forms and their applications to geometry and mechanics, eigenvalues, eigenvectors and characteristic equations with applications. Included are the representations of real and complex numbers, and quaternions by matrices, and isomorphism in order to show that matrices form a ring in abstract algebra. Some special matrices, including Hilbert’s matrix, Toeplitz’s matrix, Pauli’s and Dirac’s matrices in quantum mechanics, and Einstein’s Pythagorean formula are discussed to illustrate diverse applications of matrix algebra. Included also is a modern piece of information that puts mathematics, science and mathematics education professionals at the forefront of advanced study and research on linear algebra and its applications.  相似文献   

7.
An inequality for nonnegative matrices and the inverse eigenvalue problem   总被引:1,自引:0,他引:1  
We present two versions of the same inequality, relating the maximal diagonal entry of a nonnegative matrix to its eigenvalues. We demonstrate a matrix factorization of a companion matrix, which leads to a solution of the nonnegative inverse eigenvalue problem (denoted the nniep) for 4×4 matrices of trace zero, and we give some sufficient conditions for a solution to the nniep for 5×5 matrices of trace zero. We also give a necessary condition on the eigenvalues of a 5×5 trace zero nonnegative matrix in lower Hessenberg form. Finally, we give a brief discussion of the nniep in restricted cases.  相似文献   

8.
非奇异矩阵的逆是矩阵元素的连续函数.学者们也对矩阵广义逆的连续性有所研究.本文应用矩阵分裂和两个矩阵之和的逆的展开式,给出了一般非奇异矩阵,M-矩阵和H-矩阵的逆的连续性.当一些合理的条件满足时,这几种矩阵的逆是连续的.  相似文献   

9.
Our basic motivation is a direct method for computing the gradient of the pseudo-inverse of well-conditioned system with respect to a scalar, proposed in [13] by Layton. In the present paper we combine the Layton’s method together with the representation of the Moore-Penrose inverse of one-variable polynomial matrix from [24] and developed an algorithm for computing the gradient of the Moore-Penrose inverse for one-variable polynomial matrix. Moreover, using the representation of various types of pseudo-inverses from [26], based on the Grevile’s partitioning method, we derive more general algorithms for computing {1}, {1, 3} and {1, 4} inverses of one-variable rational and polynomial matrices. Introduced algorithms are implemented in the programming language MATHEMATICA. Illustrative examples on analytical matrices are presented.  相似文献   

10.
It is shown that the invertibility of a Toeplitz matrix can be determined through the solvability of two standard equations. The inverse matrix can be denoted as a sum of products of circulant matrices and upper triangular Toeplitz matrices. The stability of the inversion formula for a Toeplitz matrix is also considered.  相似文献   

11.
The convex cone of n×n completely positive (CP) matrices and its dual cone of copositive matrices arise in several areas of applied mathematics, including optimization. Every CP matrix is doubly nonnegative (DNN), i.e., positive semidefinite and component-wise nonnegative, and it is known that, for n4 only, every DNN matrix is CP. In this paper, we investigate the difference between 5×5 DNN and CP matrices. Defining a bad matrix to be one which is DNN but not CP, we: (i) design a finite procedure to decompose any n×n DNN matrix into the sum of a CP matrix and a bad matrix, which itself cannot be further decomposed; (ii) show that every bad 5×5 DNN matrix is the sum of a CP matrix and a single bad extreme matrix; and (iii) demonstrate how to separate bad extreme matrices from the cone of 5×5 CP matrices.  相似文献   

12.
We consider the problem of completion of a matrix with a specified lower triangular part to a unitary matrix. In this paper we obtain the necessary and sufficient conditions of existence of a unitary completion without any additional constraints and give a general formula for this completion. The paper is mainly focused on matrices with the specified lower triangular part of a special form. For such a specified part the unitary completion is a structured matrix, and we derive in this paper the formulas for its structure. Next we apply the unitary completion method to the solution of the eigenvalue problem for a class of structured matrices via structured QR iterations.

  相似文献   


13.
A new linear complexity algorithm for general nonsingular semiseparable matrices is presented. For symmetric matrices whose semiseparability rank equals to 1 this algorithm leads to an explicit formula for the inverse matrix.Supported in part by the NSF Grant DMS 9306357  相似文献   

14.
In this article the unitary equivalence transformation of normal matrices to tridiagonal form is studied.It is well-known that any matrix is unitarily equivalent to a tridiagonal matrix. In case of a normal matrix the resulting tridiagonal inherits a strong relation between its super- and subdiagonal elements. The corresponding elements of the super- and subdiagonal will have the same absolute value.In this article some basic facts about a unitary equivalence transformation of an arbitrary matrix to tridiagonal form are firstly studied. Both an iterative reduction based on Krylov sequences as a direct tridiagonalization procedure via Householder transformations are reconsidered. This equivalence transformation is then applied to the normal case and equality of the absolute value between the super- and subdiagonals is proved. Self-adjointness of the resulting tridiagonal matrix with regard to a specific scalar product is proved. Properties when applying the reduction on symmetric, skew-symmetric, Hermitian, skew-Hermitian and unitary matrices and their relations with, e.g., complex symmetric and pseudo-symmetric matrices are presented.It is shown that the reduction can then be used to compute the singular value decomposition of normal matrices making use of the Takagi factorization. Finally some extra properties of the reduction as well as an efficient method for computing a unitary complex symmetric decomposition of a normal matrix are given.  相似文献   

15.
In this article, we derive explicit expressions for the entries of the inverse of a patterned matrix that is a sum of Kronecker products. This matrix keeps the Kronecker structure under matrix inversion, and it is used, for example, in statistics, in particular in the linear mixed model analysis. The obtained results present new and extended existing algorithms for the inversion of the considered patterned matrices. We also obtain a closed-form inverse in terms of block matrices.  相似文献   

16.
The problem of accurate computations for totally non‐negative matrices has been studied; however, it remains open for other sign regular matrices. One major obstacle is that there is no known parametrization of these matrices. The main contribution of the present work is that we provide such parametrization of nonsingular totally nonpositive matrices. A useful application of our results is that these parameters can determine accurately the entries of the inverse of a nonsingular totally nonpositive matrix. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
The main issue we address in the present paper are the new models for completely nonunitary contractions with rank one defect operators acting on some Hilbert space of dimension N?∞. These models complement nicely the well-known models of Livšic and Sz.-Nagy-Foias. We show that each such operator acting on some finite-dimensional (respectively, separable infinite-dimensional Hilbert space) is unitarily equivalent to some finite (respectively semi-infinite) truncated CMV matrix obtained from the “full” CMV matrix by deleting the first row and the first column, and acting in CN (respectively ?2(N)). This result can be viewed as a nonunitary version of the famous characterization of unitary operators with a simple spectrum due to Cantero, Moral and Velázquez, as well as an analog for contraction operators of the result from [Yu. Arlinski?, E. Tsekanovski?, Non-self-adjoint Jacobi matrices with a rank-one imaginary part, J. Funct. Anal. 241 (2006) 383-438] concerning dissipative non-self-adjoint operators with a rank one imaginary part. It is shown that another functional model for contractions with rank one defect operators takes the form of the compression f(ζ)→PK(ζf(ζ)) on the Hilbert space L2(T,dμ) with a probability measure μ onto the subspace K=L2(T,dμ)?C. The relationship between characteristic functions of sub-matrices of the truncated CMV matrix with rank one defect operators and the corresponding Schur iterates is established. We develop direct and inverse spectral analysis for finite and semi-infinite truncated CMV matrices. In particular, we study the problem of reconstruction of such matrices from their spectrum or the mixed spectral data involving Schur parameters. It is pointed out that if the mixed spectral data contains zero eigenvalue, then no solution, unique solution or infinitely many solutions may occur in the inverse problem for truncated CMV matrices. The uniqueness theorem for recovered truncated CMV matrix from the given mixed spectral data is established. In this part the paper is closely related to the results of Hochstadt and Gesztesy-Simon obtained for finite self-adjoint Jacobi matrices.  相似文献   

18.
19.
We establish a correspondence between the vanishing of a certain set of minors of a matrix A and the vanishing of a related set of minors of A×1. In particular, inverses of banded matrices are characterized. We then use our results to find patterns for Toeplitz matrices with banded inverses. Finally we give an interesting determinant formula for inverses of banded matrices, and show that in general a “banded partial” matrix may be completed in a unique way to give a banded inverse of the same bandwidth.  相似文献   

20.
The eigenvalue bounds of interval matrices are often required in some mechanical and engineering fields. In this paper, we consider an interval eigenvalue problem with symmetric tridiagonal matrices. A theoretical result is obtained that under certain assumptions the upper and lower bounds of interval eigenvalues of the problem must be achieved just at some vertex matrices of the interval matrix. Then a sufficient condition is provided to guarantee the assumption to be satisfied. The conclusion is illustrated also by a numerical example. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号