首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Analytical letters》2012,45(7):1132-1144
Molecular imprinting and sol-gel technique were combined to develop a molecular imprinted polymer (MIP) based electrochemical sensor in this work. With the successive modification of multi-walled carbon nanotubes (MWNTs) and gold nanoparticles (GNPs), a modified glassy carbon electrode (GCE) was immersed in a sol-gel solution in the presence of paracetamol (PR) for the electropolymerization to fabricate an imprinted sensor. Scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS), and differential pulse voltammetry (DPV) were employed to characterize the constructed sensor. The factors for the sensor preparation, the electropolymerization potential range, the monomer concentration, and the scan rate for the sensor preparation were optimized. The sensor displayed an excellent recognition capacity toward PR compared with other analogues. Additionally, the DPV peak current was linear to the PR concentration in the range from 8.0 × 10?8 to 5.0 × 10?5 mol/L, with a detection limit of 4.0 × 10?8 mol/L. The prepared sensor also showed satisfactory reproducibility and regeneration capacity.  相似文献   

2.
The electrochemical behavior of L ‐cysteine studied at the surface of ferrocenedicarboxylic acid modified carbon paste electrode (FDCMCPE) in aqueous media using cyclic voltammetry, differential pulse voltammetry and double potential step chronoamperometry. It has been found that under optimum condition (pH 8.00) in cyclic voltammetry, the oxidation of L ‐cysteine occurs at a potential about 200 mV less positive than that of an unmodified carbon paste electrode. The kinetic parameters such as electron transfer coefficient, α, and catalytic reaction rate constant, kh were also determined using electrochemical approaches. The electrocatalytic oxidation peak current of L ‐cysteine showed a linear dependent on the L ‐cysteine concentration and linear analytical curves were obtained in the ranges of 3.0×10?5 M–2.2×10?3 M and 1.5×10?5 M–3.2×10?3 M of L ‐cysteine concentration with cyclic voltammetry (CV) and differential pulse voltammetry (DPV) methods respectively. The detection limits (3σ) were determined as 2.6×10?5 M and 1.4×10?6 M by CV and DPV methods.  相似文献   

3.
《Electroanalysis》2005,17(22):2043-2051
The electrochemical behavior of L ‐cysteine studied at the surface of ferrocenecarboxylic acid modified carbon paste electrode (FCMCPE) in aqueous media using cyclic voltammetry and double step potential chronoamperometry. It has been found that under optimum condition (pH 7.00) in cyclic voltammetry, the oxidation of L ‐cysteine is occurs at a potential about 580 mV less positive than that an unmodified carbon paste electrode. The kinetic parameters such as electron transfer coefficient, α and catalytic reaction rate constant, Kh were also determined using electrochemical approaches. The electrocatalytic oxidation peak current of L ‐cysteine showed a linear dependent on the L ‐cysteine concentration and linear calibration curves were obtained in the ranges of 10?5 M–10?3 M and 4.1×10?8 M–3.7×10?5 M of L ‐cysteine concentration with cyclic voltammetry (CV) and differential pulse voltammetry (DPV) methods respectively. The detection limits (2δ) were determined as 2.4×10?6 M and 2.5×10?8 M by CV and DPV methods. This method was also examined for determination of L ‐cysteine in some samples, such as Soya protein powder, serum of human blood by using recovery and standard addition methods.  相似文献   

4.
《Analytical letters》2012,45(18):3046-3057
Abstract

Nano-MnO2/chitosan composite film modified glassy carbon electrode (MnO2/CHIT/GCE) was fabricated and a DNA probe was immobilized on the electrode surface. The immobilization and hybridization events of DNA were characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The EIS was applied to the label-free detection of the target DNA. The human immunodeficiency virus (HIV) gene fragment was successfully detected by this DNA electrochemical sensor. The dynamic detection range was from 2.0 × 10?11 to 2.0 × 10?6 mol/L, with a detection limit of 1.0 × 10?12 mol/L.  相似文献   

5.
《Analytical letters》2012,45(2):299-311
A carbon paste electrode modified with gold nanoparticles (AuMCPE) was used as a highly sensitive sensor for determination of Tyrosine (Tyr), in the presence of an anionic surfactant, sodium dodecyl sulfate (SDS), in aqueous solution. The measurements were carried out by using of differential pulse voltammetry (DPV), cyclic voltammetry (CV), amd chronocoulometry and chronoamperometry methods. The prepared electrode shows voltammetric responses with high sensitivity and selectivity for Tyr in the presence of SDS. The relationship between the oxidation peak current of Tyr and its concentration was obtained linearly and it was 1.0 × 10?7 to 1.0 × 10?5 M with a detection limit of 5.5 × 10?8 M in the absence of SDS. On the other hand the oxidation peak current of Tyr increased significantly at AuMCPE in the presence of SDS and its detection limit was reduced to 2.7 × 10?9 M. The proposed voltammetric approach was also applied to the determination of Tyr concentration in human serum.  相似文献   

6.
《Analytical letters》2012,45(10):1697-1711
This paper examines the electrochemical oxidation of terbinafine with the boron doped diamond and glassy carbon electrodes. The studies were performed by cyclic voltammetry (CV), differential pulse voltammetry (DPV), and square-wave voltammetry (SWV). The supporting electrolytes, solution pH, the range of potentials, and the scan rates were optimized. Terbinafine was irreversibly oxidized in all electrolytes, yielding well-defined peaks in the positive potential range. The peak potential shifted towards less positive values as the solution pH increased. Voltammetric determination of terbinafine was performed under the optimized conditions. Using the boron doped diamond electrode, a linear relationship between current and concentration was obtained between 5.44 × 10?7 and 5.18 and 10?6 mol/L with SWV and between 7.75 · 10?7 and 8.55 · 10?6 mol/L by DPV. At the glassy carbon electrode, a linear relationship between 7.75 · 10?7 and 8.55 · 10?6 mol/L was obtained by SWV and between 7.75 · 10?7 and 1.05 · 10?5 mol/L by DPV. The sensitivity, precision, and selectivity of the procedures were evaluated. In order to check the practical application of the developed methods, the concentration of terbinafine was determined in pharmaceutical preparations.  相似文献   

7.
《Electroanalysis》2006,18(17):1722-1726
The electrochemical properties of L ‐cysteic acid studied at the surface of p‐bromanil (tetrabromo‐p‐benzoquinone) modified carbon paste electrode (BMCPE) in aqueous media by cyclic voltammetry (CV) and double step potential chronoamperometry. It has been found that under optimum condition (pH 7.00) in cyclic voltammetry, the oxidation of L ‐cysteic acid at the surface of BMCPE occurs at a half‐wave potential of p‐bromanil redox system (e.g., 100 mV vs. Ag|AgCl|KClsat), whereas, L ‐cysteic acid was electroinactive in the testing potential ranges at the surface of bare carbon paste electrode. The apparent diffusion coefficient of spiked p‐bromanil in paraffin oil was also determined by using the Cottrell equation. The electrocatalytic oxidation peak current of L ‐cysteic acid exhibits a linear dependency to its concentration in the ranges of 8.00×10?6 M–6.00×10?3 M and 5.2×10?7 M–1.0×10?5 M using CV and differential pulse voltammetry (DPV) methods, respectively. The detection limits (2σ) were determined as 5.00×10?6 M and 4.00×10?7 M by CV and DPV methods. This method was used as a new, selective, rapid, simple, precise and suitable voltammetric method for determination of L ‐cysteic acid in serum of patient's blood with migraine disease.  相似文献   

8.
《Analytical letters》2012,45(7):1108-1116
A new electrochemical sensor was fabricated by modifying the glass carbon electrode surface with CuS nanocomposites and chitosan for the determination of pentachlorophenol. CuS nanocomposites obtained by a solvothermal method were composed primarily of CuS with hexagonal phase and Cu2Cl(OH)3 with a tetragonal phase. The results indicated that CuS nanocomposites possessed good electrochemical activity. After optimizing the experimental conditions, the linear dependence of current vs. pentachlorophenol concentration was reached in a range from 1.88 × 10?6–7.50 × 10?5 mol/L pentachlorophenol, and the detection limit was 6.25 × 10?7 mol/L. The electrode displayed a high degree of stability and reproducibility. A new, simple, rapid, and highly sensitive electrochemical detection method of pentachlorophenol was established.  相似文献   

9.
A simpe electrochemical sensor for detection of cholic acid (CA) was designed by modifying phosphomolybdate (PMo12) doped polypyrrole (PPy) film on glassy carbon electrode (PMo12‐PPy/GCE). The electrochemical behavior of CA on PMo12‐PPy/GCE was investigated by cyclic voltammetry and 0.5 order differential voltammetry. The results indicated that CA had high inhibitory activity toward the peak currents of PMo12‐PPy/GCE. The reduction peak currents were linearly related to the logarithmic value of the concentration of CA from 1.0×10?7 to 1.0×10?3 mol/L with a low detection limit of 1.0×10?8 mol/L. The developed sensor exhibited excellent sensitivity, selectivity and stability for detection of CA, and it could be successfully applied to detect the level of CA in the urine samples. Moreover, the response mechanism of CA on the PMo12‐PPy/GCE was discussed in detail.  相似文献   

10.
A sensitive and selective imprinted electrochemical sensor for the determination of aflatoxin B1 (AFB1) was constructed on a glassy carbon electrode by stepwise modification of functional multiwalled carbon nanotubes (MCNTs), Au/Pt bimetallic nanoparticles (Au/PtNPs), and a thin imprinted film. The fabrication of a homogeneous porous poly o-phenylenediamine (POPD)-grafted Au/Pt bimetallic multiwalled carbon nanotubes nanocomposite film was conducted by controllable electrodepositing technology. The sensitivity of the sensor was improved greatly because of the nanocomposite functional layer; the proposed sensor exhibited excellent selectivity toward AFB1 owing to the porous molecular imprinted polymer (MIP) film. The surface morphologies of the modified electrodes were characterized using a scanning electron microscope. The performance of the imprinted sensor was investigated by cyclic voltammetry, differential pulse voltammetry, and electrochemical impedance spectroscopy in detail. A linear relationship between the sensor response signal and the logarithm of AFB1 concentrations ranging from 1?×?10?10 to 1?×?10?5 mol L?1 was obtained with a detection limit of 0.03 nmol L?1. It was applied to detect AFB1 in hogwash oil successfully.  相似文献   

11.
A sensitive and selective electrochemical sensor based on molecularly imprinted polymers (MIPs) was developed for caffeine (CAF) recognition and detection. The sensor was constructed through the following steps: multiwalled carbon nanotubes and gold nanoparticles were first modified onto the glassy carbon electrode surface by potentiostatic deposition method successively. Subsequently, o-aminothiophenol (ATP) was assembled on the surface of the above electrode through Au–S bond before electropolymerization. During the assembled and electropolymerization processes, CAF was embedded into the poly(o-aminothiophenol) film through hydrogen bonding interaction between CAF and ATP, forming an MIP electrochemical sensor. The morphologies and properties of the sensor were characterized by scanning electron microscopy, cyclic voltammetry, and differential pulse voltammetry. The recognition and determination of the sensor were observed by measuring the changes of amperometric response of the oxidation-reduction probe, [Fe(CN)6]3?/[Fe(CN)6]4?, on modified electrode. The results demonstrated that the prepared sensor had excellent selectivity and high sensitivity for CAF, and the linear range was 5.0?×?10?10?~?1.6?×?10?7?mol?L?1 with a detection limit of 9.0?×?10?11?mol?L?1 (S/N?=?3). The sensor was also successfully employed to detect CAF in tea samples.  相似文献   

12.
《Analytical letters》2012,45(9):1750-1762
Abstract

The interaction between clozapine (CLZ) as an orally administrated antipsychotic drug with double stranded calf thymus DNA (dsDNA) was investigated at electrode surface using differential pulse voltammetry (DPV). Activated carbon paste electrode (CPE) was modified with dsDNA and used for monitoring the changes of the characteristics peak of CLZ in 0.05 M acetate buffer (pH 4.3). The adsorptive stripping voltammetry on dsDNA‐modified carbon paste electrode (dsDNA‐CPE) was used for determination of very low concentration of CLZ. Under optimal conditions, the oxidation peak current is proportional to CLZ concentration in the range of 7×10?9?1.2×10?6 mol l?1 with a detection limit of 1.5×10?9 mol l?1 for 180 s accumulation time by DPV. The proposed dsDNA‐CPE was successfully used for determination of CLZ in human serum samples with recovery of 97.0±2.5%.  相似文献   

13.
The electrochemical properties of hydrazine studied at the surface of a carbon paste electrode spiked with p‐bromanil (tetrabromo‐p‐benzoquinone) using cyclic voltammetry (CV), double potential‐step chronoamperometry and differential pulse voltammetry (DPV) in aqueous media. The results show this quinone derivative modified carbon paste electrode, can catalyze the hydrazine oxidation in an aqueous buffered solution. It has been found that under the optimum conditions (pH 10.00), the oxidation of hydrazine at the surface of this carbon paste modified electrode occurs at a potential of about 550 mV less positive than that of a bar carbon paste electrode. The electrocatalytic oxidation peak current of hydrazine showed a linear dependent on the hydrazine concentrations and linear analytical curves were obtained in the ranges of 6.00×10?5 M–8.00×10?3 M and 7.00×10?6 M–8.00×10?4 M of hydrazine concentration with CV and differential pulse voltammetry (DPV) methods, respectively. The detection limits (3σ) were determined as 3.6×10?5 M and 5.2×10?6 M by CV and DPV methods. This method was also used for the determination of hydrazine in the real sample (waste water of the Mazandaran wood and paper factory) by standard addition method.  相似文献   

14.
A new chemically modified carbon paste electrode is fabricated to determine lead ion concentration in its trace level in aqueous media with differential pulse voltammetry (DPV). The best performance is obtained by the carbon paste electrode composition including 20% of dithiodibezoic acid (DDA), 80% of high purity graphite powder and 60?µL of colloidal gold nanoparticle (AuNP) solution. The proposed electrode has a wide linear calibration response from 1?×?10?9 to 6?×?10?5 M with a detection limit of 6.6?×?10?10?M, at pH 3.5. Seven replicate determination of 5?×?10?8?M of lead ion concentration gives a relative standard deviation of 3.33%. The modified sensor is applied to determine lead contents in some environmental and biological Samples with satisfactory results.  相似文献   

15.
We have developed a molecularly imprinted polymer (MIP) electrochemical sensor for entacapone (ETC) based on an electropolymerised polyphenylenediamine (Po-PD) on a glassy carbon electrode (GCE) surface. The direct electropolymerisation of the o-phenylenediamine monomer (o-PD) was carried out with ETC as a template. The steps of electropolymerization process, template removal and binding of the analyte were tested by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) using [Fe(CN)6]3−/[Fe(CN)6]4 − as a redox probe. The operation of the sensor has been investigated by differential pulse voltammetry (DPV). Under optimal experimental conditions, the response of the DPV was linearly proportional to the ETC concentration between 1.0×10−7 and 5.0×10−6 M ETC with a limit of detection (LOD) of 5.0×10−8 M. The developed sensor had excellent selectivity without detectable cross-reactivity for levodopa and carbidopa. The MIP sensor was successfully used to detect ETC in spiked human serum samples.  相似文献   

16.
A glassy carbon electrode modified with per‐6‐amino‐β‐cyclodextrin (β‐CDNH2) and functionalized single‐walled carbon nanotubes (SWCNT‐COOH) was elaborated. This structure was investigated for the detection of dopamine acid (DA) in presence of ascorbic acid (AA). The sensor behavior was studied by cyclic voltammetry, square wave voltammetry and electrochemical impedance spectroscopy. The analysis results show that the electrode modification with CD derivative improves the sensitivity and selectivity of the DA recognition; the electrochemical response was further improved by introduction of SWCNT‐COOH. The sensor shows good and reversible linear response toward DA within the concentration range of 7×10?7–10?4 M with a detection limit of 5×10?7 M.  相似文献   

17.
《Analytical letters》2012,45(11):1797-1807
Fe3O4 magnetic nanoparticles were synthesized by chemical co-precipitation with sodium citrate as a surfactant and were used with chitosan to construct a novel hydrogen peroxide sensor. The electrochemical behavior of hydrogen peroxide at the sensor was investigated by cyclic voltammetry. The composite film electrocatalyzed the reduction of hydrogen peroxide, and the peak current increased linearly with concentration from 1.00 × 10?5 to 1.00 × 10?3 mol · L?1 (R = 0.9974) with a detection limit of 1.53 × 10?6 mol · L?1. This novel nonenzyme sensor provided good sensitivity, stability, and precision with potential applications.  相似文献   

18.
A glassy carbon electrode (GCE) modified with carbon Printex 6L (Printex6L/GCE) as a novel sensor is proposed. A morphological study was carried out using scanning electron microscopy, and an electrochemical characterization of the proposed electrode was performed by cyclic voltammetry (CV) using [Fe(CN)6]4? as a redox probe. With the incorporation of the carbon Printex 6L film onto the GCE surface, the [Fe(CN)6]4? analytical signal was substantially increased and the difference between the oxidation and reduction potentials (ΔE p) decreased, a characteristic of the electrocatalytic effect. Furthermore, the use of carbon Printex 6L film resulted in an 84 % increase in the oxidation current and a 123 % increase in the reduction current. Faster charge transfer was observed at the proposed electrode/electrolyte interface during CV when compared with GCE. The Printex6L/GCE was tested for ranitidine (RNT) sensing and showed a decrease in the working potential and an increase in the analytical signal, when compared with GCE, again demonstrating an electrocatalytic effect. Under optimized experimental conditions, the developed square-wave adsorptive anodic stripping voltammetry (SWAdASV) method presented an analytical curve that was linear in RNT concentration range from 1.98 × 10?6 to 2.88 × 10?5 mol L?1 with a detection limit of 2.44 × 10?7 mol L?1. The developed Printex6L/GCE was successfully applied to the determination of RNT concentrations in human body fluid samples (urine and serum).  相似文献   

19.
A novel molecularly imprinted sensor was firstly prepared based on a carbon nanotubes/graphene composite modified carbon electrode (MIPs/CNT/GP/CE) for the selective determination of bovine serum albumin. The molecularly imprinted sensor was tested by differential pulse voltammetry (DPV) to investigate the relationship between the response current and bovine serum albumin concentration. The results showed that a wide linear range (1.0×10?4 to 1.0×10?10 g mL?1) for the detection of bovine serum albumin with a low detection limit of 6.2×10?11 g mL?1 for S/N=3 was obtained. The novel imprinted sensor exhibited high selectivity, sensitivity, and reproducibility, which provided an applicable way for sensor development.  相似文献   

20.
Cu2O nanoparticles (nano-Cu2O) modified glassy carbon electrode (GCE) was fabricated and used to investigate the electrochemical behaviour of 4-nitrophenol (4-NP) by cyclic voltammetry (CV), chronoamperometry (CA), chronocoulometry (CC) and differential pulse voltammetry (DPV). Compared with GCE, a remarkable increase in oxidation peak current was observed. It indicates that nano-Cu2O exhibits remarkable enhancement effect on the electrochemical oxidation of 4-NP. Under the optimised experimental conditions, the oxidation peak currents were propotional to 4-NP concentration in the range from 1.0?×?10?6 to 4.0?×?10?4?mol?L?1 with a detection limit of 5.0?×?10?7?mol?L?1 (S/N?=?3). The fabricated electrode presented good repeatability, stability and anti-interference. Finally, the proposed method was applied to determine 4-NP in water samples. The recoveries for these samples were from 94.60% to 105.5%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号