首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this work, two stability‐indicating chromatographic methods have been developed and validated for determination of flecainide acetate (an antiarrhythmic drug) in the presence of its degradation products (flecainide impurities; B and D). Flecainide acetate was subjected to a stress stability study including acid, alkali, oxidative, photolytic and thermal degradation. The suggested chromatographic methods included the use of thin layer chromatography (TLC‐densitometry) and high‐performance liquid chromatography (HPLC). The TLC method employed aluminum TLC plates precoated with silica gel G.F254 as the stationary phase and methanol–ethyl acetate–33% ammonia (3:7:0.3, by volume) as the mobile phase. The chromatograms were scanned at 290 nm and visualized in daylight by the aid of iodine vapor. The developed HPLC method used a RP‐C18 column with isocratic elution. Separation was achieved using a mobile phase composed of phosphate buffer pH 3.3–acetonitrile–triethylamine (53:47:0.03, by volume) at a flow rate of 1.0 mL/min and UV detection at 292 nm. Factors affecting the efficiency of HPLC method have been studied carefully to reach the optimum conditions for separation. The developed methods were validated according to the International Conference on Harmonization guidelines and were applied for bulk powder and dosage form. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
Three spectrophotometric methods including Vierordt's method, derivative, ratio spectra derivative, and thin layer chromatography (TLC)-UV densitometric method were developed for simultaneous determination of drotaverine HCl (DRT) and nifuroxazide (NIF) in presence of its impurity, 4-hydroxybenzohydrazide (4-HBH). In Vierordt's method, (E(1 cm)(1%)) values were calculated at 227 and 368 nm in the zero-order spectra of DRT and NIF. By derivative spectrophotometry, the zero-crossing method, drotaverine HCl was determined using the second derivative at 245 nm and the third derivative at 238 nm, while nifuroxazide was determined using the first derivative at 399 nm and the second derivative at 411 nm. The ratio spectra derivative spectrophotometry is basedon the measure of the amplitude at 459 nm for DRT and at 416 nm for NIF in the first derivative of the ratio spectra. Calibration graphs of the three spectrophotometric methods were plotted in the range 1-10 mug/ml of DRT and 2-20 mug/ml of NIF. TLC-UV densitometric method was achieved on silica gel plates using ethyl acetate : methanol : ammonia 33% (10 : 1 : 0.1 v/v/v) as the mobile phase. The Rf values were 0.74, 0.50, 0.30+/-0.01 for DRT, NIF and 4-HBH, respectively. On the fluorescent plates, the spots were located by fluorescence quenching and the densitometrical area were measured at 308 and 287 nm with linear range 0.2-4 mug/spot and 0.6-12 mug/spot for DRT and NIF, respectively. The proposed methods have been successfully applied to the commercial pharmaceutical formulation without any interference of excipients. Mean recoveries, relative standard deviations and the results of the proposed methods were compared with those obtained by applying the alternate methods.  相似文献   

3.
A new liquid chromatographic method was developed for simultaneous determination of the widely used oral antidiabetic, metformin hydrochloride with antidiabetics comprising the meglitinides class in bulk, laboratory-prepared mixtures and pharmaceutical products. It was applied in the presence of metformin-reported impurity (1-cyanoguanidine). It was also applied for the determination of repaglinide in the presence of its related compounds. Chromatographic separation was achieved with isocratic elution mode using a mobile phase of acetonitrile: 0.01 M sodium dihydrogen phosphate (pH: 2.8) (67:33; v/v) flowing through a LiChrospher NH2 (amino) Agilent® column (250 × 4.6 mm—5 µm) at a rate of 0.8 mL/min at ambient temperature in a run time of 4 min. UV detection was carried out at 220 nm. The method was validated according to International Conference on Harmonization guidelines. Linearity, accuracy and precision were satisfactory over concentration ranges (µg/mL): 3.5–350 for metformin hydrochloride, 14–140 for nateglinide, 1–100 for mitiglinide calcium and 0.1–100 for repaglinide. Coefficients of determination were ?0.99 for all analytes. Limits of quantification were found (in µg/mL): 0.06, 0.08, 0.198 and 0.029 for metformin hydrochloride, nateglinide, mitiglinide calcium and repaglinide, respectively. The present method was found to be rapid, selective, economic and simple in operation satisfying the chromatographers’ needs for quality assessment of pharmaceutical products.  相似文献   

4.
《印度化学会志》2022,99(11):100723
This study aims to quantitative, qualitative estimation of phenolics, antioxidant (DPPH free radical scavenging, nitric oxide radical scavenging, superoxide anion scavenging, reducing power and metal chelating activity), and herbicidal properties of methanol extract of Vitex species {(Vitex negundo L. collected from Haldwani (VNH), Bhimtal (VNB) and Salari (VNS); Vitex agnus-castus L. collected from Pantnagar (VACP); Vitex trifolia L. collected from Pantnagar (VTP)}, Kumaun region, Uttarakhand, India. Herbicidal activity of methanol extracts of Vitex species was evaluated against Raphanus sativus at various concentrations for 120 h. The results revealed that the phenolic content varies from species to species as well as their location. HPLC profiling of Vitex species was carried out to identify the presence of different phenolic acids viz: vanillic acid, ferulic acid, p-coumaric acid, etc. In methanol extracts of Vitex species. VTP showed the highest DPPH (IC50 = 6.84 μg/mL), nitric oxide (IC50 = 2.86 μg/mL) and superoxide radical scavenging (IC50 = 3.12 μg/mL) activity. The maximum reducing power was observed in VNH (RP50 = 28.22 μg/mL) and the highest ion chelating capacity in VNB (IC50 = 6.80 μg/mL). The effective herbicidal activity was shown by VNS, resulting in complete inhibition of seed germination. Based on the heatmap clustering selected species are divided into two clusters. The first cluster comprises VNB and VTP are there whereas in the second cluster there are two sub-clusters including VNS only in one sub-cluster and VNH and VACP in the second sub-cluster.  相似文献   

5.
A simple isocratic liquid chromatographic method was developed for determination of lopinavir from its related impurities and assay for the first time. This method involves the use of a C(8) (Symmetry Shield RP8, 150 x 4.6 mm, 5 microm) column. The method was validated over the range of limit of quantitation (LOQ) to 120% of impurity specification limit and LOQ to 150% of working concentration for assay. The mobile phase consisted of a mixture of 50 mM of potassium phosphate buffer, acetonitrile and methanol in the ratio of 40:50:10. The flow rate was set at 1.0 mL/min with UV detection monitored at 210 nm. The drug was subjected to stress conditions of hydrolysis, oxidation, photolysis and thermal degradation. The developed method was validated for linearity, range, precision, accuracy and specificity. This method was successfully applied for content determination of lopinavir in pharmaceutical formulations. The method can be conveniently used in a quality control laboratory for routine analysis for assay and related substances as well for the evaluation of stability samples of bulk drugs and pharmaceutical formulations.  相似文献   

6.
We present a highly selective and sensitive method for the determination of cysteine (Cys) and related aminothiols that play important roles in health and disease. The key step in the analysis is treatment with 1,1′-thiocarbonyldiimidazole (TCDI) that rapidly and quantitatively reacts with both the amino and thiol groups to form stable cyclic dithiocarbamates with intense UV absorption. Cys, homocysteine (hCys), and cysteinylglycine in plasma (75 μl), urine (100 μl), or cerebrospinal fluid (100–500 μl) were determined by separating and measuring their cyclic derivatives by a high performance liquid chromatograph (HPLC) connected to a UV detector. The chromatograms obtained using TCDI contained fewer and better-resolved peaks than those produced by less selective reagents used previously. Using chemically similar 2-methylcysteine as the internal standard, high repeatability (variation of less than 5%) and adequate sensitivity to detect small increments (10–20%) in the concentrations of cysteinylglycine and hCys were achieved. The HPLC method can also be modified to measure -penicillamine (greater than 0.8 μM) in plasma (50 μl) providing a potential method to monitor plasma levels of this drug in patients.  相似文献   

7.
Betamethasone Sodium Phosphate and Betamethasone Acetate are the two corticosteroids active pharmaceutical ingredients (APIs) that are present in the injectable formulation, Celestone Chronodose® Injection. It is extremely challenging to develop a Quality Control friendly HPLC method to separate all the potential impurities and degradation products of the two APIs from each other using a single HPLC method. A novel stability-indicating reversed-phase HPLC (RP-HPLC) method using two oxo-cyclic organic modifiers in the mobile phase was developed and validated. This method can separate a total of 32 potential impurities and degradation products from the two APIs and also from each other. Peak symmetry and separation efficiency were enhanced by using two chaotropic agents (trifluoroacetic acid and potassium hexafluorophosphate) in the mobile phases of this method. The stability-indicating capability of this method has been demonstrated by analyzing aged and stressed degraded stability samples of the drug product. This method uses an ACE 3 C18 (15 cm × 4.6 mm) HPLC column. The method was validated per ICH guidelines and proved to be suitable for routine QC use.  相似文献   

8.
Two methods, capillary electrophoresis (CE) and high-performance liquid chromatography (HPLC), for analysis of cetirizine dihydrochloride in small sample volumes of human plasma were compared. The CE and HPLC assays were developed and validated by analyzing a series of plasma samples containing cetirizine dihydrochloride in different concentrations using these two methods. The extraction procedure is simple and no complicated purification steps or derivatization are required. The analysis time in the HPLC method was shorter than that in the CE method, but solvent consumption was considerably lower in the CE method. The calibration curve was linear to at least 10-1000 ng/mL both for CE and HPLC with r(2) = 0.9993 and r(2) = 0.9994, respectively. The detection limits for cetirizine dihydrochloride were 3 and 5 ng/mL with CE and HPLC (a UV detector was applied in the both cases), respectively. Both methods were selective, robust and specific, allowing reliable quantification of cetirizine dihydrochloride, and could be useful for clinical and biomedical investigations.  相似文献   

9.
Fluorometholone (FLM) and Sodium Cromoglycate (CMG) are co-formulated in ophthalmic preparation and showed marked instability under different conditions. Two specific, sensitive and precise stability-indicating chromatographic methods have been developed and validated for their determination in the presence of their degradation products and FLM impurity. Ten components were efficiently separated by them. The first method was HPTLC-spectrodensitometry, where the separation was achieved using silica gel 60?F254 HPTLC plates and developing system of ethyl acetate: methanol (9:1, v/v). The second method was a reversed phase HPLC associated with kinetic study of the degradation process and was successfully applied for determination of the studied compounds in spiked rabbit aqueous humor. The mobile phase was acetonitrile: methanol: 0.05?M potassium dihydrogenphosphate (0.1% trimethylamine); pH 2.5, adjusted with orthophosphoric acid (20: 30: 50, by volume). In both methods, the separated components were detected at 240?nm and system suitability was checked. Good correlation was obtained in the range of 0.10–24.00 and 0.20–48.00?µg band?1, for FLM and CMG by HPTLC. While for HPLC, the linearity ranges from 0.01–50.00 and 0.05–50.00?µg?mL?1 for both drugs. The methods were applied in pharmaceutical formulation, where they were compared to the reported method with no significant difference.  相似文献   

10.
Vidal JC  Esteban S  Gil J  Castillo JR 《Talanta》2006,68(3):791-799
The use of several designs of amperometric enzymatic biosensors based on the immobilized tyrosinase enzyme (Tyr) for determining dichlorvos organophosphate pesticide are described. The biosensors are based on the reversible inhibition of the enzyme and the chronocoulometric measurement of the charge due to the charge-transfer mediator 1,2-naphthoquinone-4-sulfonate (NQS). Tyr becomes active when reducing the quinone form of the mediator molecule (NQS) to the reactive o-diol form substrate of Tyr (H2NQS) at the working electrode, thus permitting modulation of the catalytic activity of the enzyme and measurement of the inhibition produced by the pesticide. The full activity of the enzyme reversibly recovers after removal of the pesticide and re-oxidation of H2NQS.Tyr was immobilized onto electrodes using different procedures: (i) entrapment within electropolymerized conducting and non-conducting polymers, (ii) covalent attachment to self-assembled monolayers (SAM), (iii) cross-linking with glutaraldehyde (and nafion covering) and (iv) dispersion within carbon-paste electrodes. The mediator was co-immobilized onto the working electrode next to the enzyme and reagentless biosensors were subsequently constructed. In the SAM design (ii) NQS was added to the solution. The analytical properties of the different biosensors based on the competitive inhibition produced by dichlorvos were then compared. A detection limit of about 0.06 μM was obtained for dichlorvos with entrapment of NQS and Tyr within electropolymerized poly(o-phenylenediamine) polymer (oPPD), which was the design that proved to have the best analytical performance.  相似文献   

11.
《Arabian Journal of Chemistry》2020,13(11):8026-8038
A green, fast, simple, economical, ultra-sensitive and accurate spectrofluorimetric method was described in the article for the estimation of Doxorubicin hydrochloride (DOX), a type II topoisomerase enzyme inhibitor either alone and in the presence of co- administered drug; paclitaxel as adjuvant chemotherapy combination in bulk, pharmaceutical dosage form and biological fluids. The proposed method was based on studying the fluorescence demeanor of DOX in different organized media and solvents. The intrinsic fluorescence was found to be greatly enhanced in acidic ethanolic solution. The maximum intensity of fluorescence was observed at 590 nm after excitation at 475 nm. Different experimental parameters were examined and adjusted involving various organized media, solvent, and pH. The methods was validated according to ICH guidelines. The linearity of the method was accomplished in the range of 7 × 10−4–4.0 µg ml−1. The values of LOD and LOQ were 0.2 and 0.6 ng ml−1 respectively. The present method is extremely sensitive enough for determination of traces of the drug in various biological fluids with excellent % recovery. The proposed method was extended to investigate the stability of DOX following various induced degradation protocols including: acidic, alkaline, oxidative and photolytic. In addition, the kinetics of the degradation of DOX was investigated and the apparent first-order rate constant, half-life times and Quantum yield were calculated.  相似文献   

12.
An accurate, rapid, and reliable ultra high performance liquid chromatography with tandem mass spectrometry method was developed and validated for the simultaneous determination of baicalin, wogonoside, baicalein, wogonin, and oroxylin A in rat plasma. Then, the stability of baicalin and baicalein in the preparation of plasma sample was systematically investigated. The Waters BEH C18 column was used with a gradient mobile phase system of acetonitrile and water containing 0.1% formic acid. The analytes were detected in the multiple reaction monitoring mode with positive electrospray ionization. 100 μL fresh plasma was added with 50 μL antioxidant reagent (1 mol/L HCl containing 0.5% Vitamin C), and liquid–liquid extraction with ethyl acetate was used to extract the analytes from plasma. Lower limits of quantification of baicalin, wogonoside, baicalein, wogonin, and oroxylin A were 21.9, 4.80, 1.20, 0.848, and 0.800 ng/mL, respectively. The mean extract recoveries of five flavonoids were 69.1∼89.2%, and the precision and accuracy were within the acceptable limits. This method was further successfully applied to the comparative pharmacokinetic study of these five flavonoids in rats after oral administration of Xiaochaihutang and three compatibilities. The obtained results may be helpful to reveal the mechanism of Xiaochaihutang formula compatibility.  相似文献   

13.
An extremely sensitive and simple gas chromatography with mass spectrometry method was developed and completely validated for the analysis of five process‐related impurities, viz., 4‐hydroxy‐l ‐phenylglycine, 4‐hydroxyphenylacetonitrile, 4‐hydroxyphenylacetic acid, methyl‐4‐hydroxyphenylacetate, and 2‐[4‐{(2RS )‐2‐hydroxy‐3‐[(1‐methylethyl)amino]propoxy}phenyl]acetonitrile, in atenolol. The separation of impurities was accomplished on a BPX‐5 column with dimensions of 50 m × 0.25 mm i.d. and 0.25 μm film thickness. The method validation was performed following International Conference on Harmonisation guidelines in which the method was capable to quantitate 4‐hydroxy‐l ‐phenylglycine, 4‐hydroxyphenylacetonitrile, and 4‐hydroxyphenylacetic acid at 0.3 ppm, and methyl‐4‐hydroxyphenylacetate and 2‐[4‐{(2RS )‐2‐hydroxy‐3‐[(1‐methylethyl)amino]propoxy}phenyl]acetonitrile at 0.35 ppm with respect to 10 mg/mL of atenolol. The method was linear over the concentration range of 0.3–10 ppm for 4‐hydroxy‐l ‐phenylglycine, 4‐hydroxyphenylacetonitrile, and 4‐hydroxyphenylacetic acid, and 0.35–10 ppm for methyl‐4‐hydroxyphenylacetate and 2‐[4‐{(2RS )‐2‐hydroxy‐3‐[(1‐methylethyl)amino]propoxy}phenyl]acetonitrile. The correlation coefficient in each case was found ≥0.998. The repeatability and recovery values were acceptable, and found between 89.38% and 105.60% for all five impurities under optimized operating conditions. The method developed here is simple, selective, and sensitive with apparently better resolution than the reported methods. Hence, the method is a straightforward and good quality control tool for the quantitation of selected impurities at trace concentrations in atenolol.  相似文献   

14.
A simple, rapid, selective and sensitive HPLC‐UV method has been developed and validated for the determination of ponicidin in rat plasma. The analyte was extracted from rat plasma by liquid–liquid extraction with ethyl acetate as the extraction solvent. The LC separation was performed on a Zorbax Eclipse XDB C18 analytical column (150 × 4.6 mm i.d., 5 µm) with an isocratic mobile phase consisting of methanol–water–phosphoric acid (45:55:0.01, v/v/v) at a flow rate of 1.0 mL/min. There was a good linearity over the range of 0.1–25 µg/mL (r = 0.9995) with a weighted (1/C2) least square method. The lower limit of quantification was proved to be 0.1 µg/mL. The accuracy was within ±10.0% in terms of relative error and the intra‐ and inter‐day precisions were less than 9.1% in terms of relative standard deviation. After validation, the method was successfully applied to characterize the pharmacokinetics of ponicidin in rats. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
A comparative study of analysis methods (traditional calibration method and artificial neural networks (ANN) prediction method) for laser induced breakdown spectroscopy (LIBS) data of different Al alloy samples was performed. In the calibration method, the intensity of the analyte lines obtained from different samples are plotted against their concentration to form calibration curves for different elements from which the concentrations of unknown elements were deduced by comparing its LIBS signal with the calibration curves. Using ANN, an artificial neural network model is trained with a set of input data of known composition samples. The trained neural network is then used to predict the elemental concentration from the test spectra. The present results reveal that artificial neural networks are capable of predicting values better than traditional method in most cases.  相似文献   

16.
This study reports a comparison between conventional methods, ionic liquids, microwave (MW) irradiation, and combinations thereof for the synthesis of a series of fourteen 1-aryl-2-arylamino-5-trifluoroacetyl-1,2,3,4-tetrahydropyridines. In all of the reactions tested, the products were obtained at very good yields (87–97%), but the reaction times were very different, depending on the method used. Comparing to other methods, the time decreased to 1?min when [BMIM]BF4 under MW irradiation was used, thus evidencing a synergic effect.  相似文献   

17.
H. Borsdorf  E.G. Nazarov 《Talanta》2007,71(4):1804-1812
The ion mobilities of halogenated aromatics which are of interest in environmental chemistry and process monitoring were characterized with field-deployable ion mobility spectrometers and differential mobility spectrometers. The dependence of mobility of gas-phase ions formed by atmospheric-pressure photoionization (APPI) on the electric field was determined for a number of structural isomers. The structure of the product ions formed was identified by investigations using the coupling of ion mobility spectrometry with mass spectrometry (APPI-IMS-MS) and APPI-MS. In contrast to conventional time-of-flight ion mobility spectrometry (IMS) with constant linear voltage gradients in drift tubes, differential mobility spectrometry (DMS) employs the field dependence of ion mobility. Depending on the position of substituents, differences in field dependence were established for the isomeric compounds in contrast to conventional IMS in which comparable reduced mobility values were detected for the isomers investigated. These findings permit the differentiation between most of the investigated isomeric aromatics with a different constitution using DMS.  相似文献   

18.
We describe a simple, rapid and sensitive high‐performance liquid chromatography–electrospray ionization tandem mass spectrometric method that was developed for the simultaneous determination of carebastine and pseudoephedrine in human plasma using cisapride as an internal standard. Acquisition was performed in multiple‐reaction monitoring mode by monitoring the transitions: m/z 500.43 > 167.09 for carebastine and m/z 166.04 > 147.88 for pseudoephedrine. The devised method involves a simple single‐step liquid–liquid extraction with ethyl acetate. Chromatographic separation was performed on a C18 reversed‐phase chromatographic column at 0.2 mL/min by isocratic elution with 10 mM ammonium formate buffer–acetonitrile (30:70, v/v; adjusted to pH 3.3 with formic acid). The devised method was validated over 0.5–100 ng/mL of carebastine and 5–1000 ng/mL of pseudoephedrine with acceptable accuracy and precision, and was successfully applied to a bioequivalence study involving a single oral dose (10 mg of ebastine plus 120 mg of pseudoephedrine complex) to healthy Korean volunteers. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
A reliable, sensitive, rapid and environmentally friendly analysis procedure for the simultaneous determination of the analytes with a wide range of polarity in the environmental water was developed by coupling dispersive magnetic solid-phase extraction (d-MSPE) with high-performance liquid chromatography (HPLC)–diode array detector (DAD) and ultra-high pressure liquid chromatography (UHPLC)-triple quadrupole mass spectrometer (MS/MS), in this work. Magnetic ionic liquid modified multi-walled carbon nanotubes (m-IL-MWCNTs) were prepared by spontaneous assembly of magnetic nanoparticles and imidazolium-modified carbon nanotubes, and used as the sorbent of d-MSPE to simultaneously extract aryloxyphenoxy-propionate herbicides (AOPPs) and their polar acid metabolites due to the excellent π–π electron donor–acceptor interactions and anion exchange ability. The factors, including the amount of sorbent, pH of the sample solution, extraction time and the volume of elution solvent were investigated. Under the optimized conditions, the proposed d-MSPE coupling to HPLC–DAD system had a satisfactory performance, the limits of detection (LODs, defined as the signal to noise ratio of 3) and the limits of quantification (LOQs, defined as the signal to noise ratio of 10) for analytes in Milli-Q water were in the range of 2.8–14.3 and 9.8–43.2 μg L−1 respectively. Calibration curves were linear (r2 > 0.998) over the concentration range from 0.02 to 1 mg L−1. The recoveries of the eight analytes ranged from 66.1 to 89.6% with the RSDs less than 8.6%. In order to extend the method in extremely low concentration analysis, d-MSPE-UHPLC–MS/MS was investigated, which showed better performance in terms of limit of detection and analysis time.  相似文献   

20.
A method based on ultra‐performance liquid chromatography–tandem mass spectrometry has been developed for the rapid and simultaneous determination of five catechins and four theaflavins in rat plasma using ethyl gallate as internal standard. The pharmacokinetic profiles of these compounds were compared after oral administration of five kinds of Da Hong Pao tea to rats. Biosamples processed with a mixture of β‐glucuronidase and sulfatase were extracted with ethyl acetate–isopropanol. Chromatographic separation was achieved by gradient elution using 10 mm HCOONH4 solution and methanol as the mobile phase. Analytes were detected using negative ion electrospray ionization in multiple reaction monitoring mode. The lower limits of quantification were 1.0, 0.74 and 0.5 ng/mL for theaflavins, two catechins and three catechins, respectively. The validation parameters were well within acceptable limits. The average half‐lives (t1/2) in blood of the reference solution group was much shorter than those of tea samples. The values of AUC0–t and Cmax of the polyphenols and theaflavins exhibited linear pharmacokinetic characteristics which were related to the dose concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号