首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A new fluorescent derivative (1) containing coumarin exhibits Fe(III)-selective strong yellow-green fluorescence in ethanol. This compound could be used as an “off-on” chemosensor and allow the detection of Fe3+ by monitoring changes in absorption and fluorescence spectra. Upon addition of Fe3+, an overall emission change of 125-fold was observed. High selectivity and sensitivity were observed over other metal ions, mainly due to the spirolactam ring-opening power of Fe3+. The detection limit was as low as 5.6?ppb. Photo-induced electron transfer, coupled with intramolecular charge transfer are proposed to account for the observed spectral response.  相似文献   

2.
A simple Al3+ fluorescent chemosensor (1) based on diacylhydrazone has been designed and synthesized by the condensation reaction of 2-hydroxy naphthaldehyde and metaphthalic hydrazide. The chemosensor 1 displays a specific and sensitive response to Al3+ over other cations in DMSO solution. Upon the addition of DMSO solution of Al3+, the sensor 1 shows an immediate fluorescence ‘turn-on’ response and emitting strong blue emission with visible color change from colorless to green. The fluorescence quantum yield enhanced from 7.24% to 48.68%. Meanwhile, the fluorescence and UV absorption spectra detection limits of the chemosensor 1 for Al3+ were 2.0 × 10?7 M and 5.6 × 10?7 M respectively, indicating the high sensitivity of 1 to Al3+. Furthermore, test strips based on 1 were fabricated, which could be used as a convenient test kit for the detection of Al3+ and an efficient Al3+ controlled fluorescent security display materials.  相似文献   

3.
An efficient quinoline-based fluorescent chemosensor (QLNPY) was successfully developed for the detection of zinc ions (Zn2+). This novel chemosensor displayed higher sensitivity and selectivity toward Zn2+ over other competitive metal ions accompanying with obvious fluorescence enhancement. The QLNPY-Zn2+ complex can be further used as a new fluorescent “turn-off” sensor for pyrophosphate (PPi) and sulfur ion (S2?) via a Zn2+ displacement approach. The limits of detection were calculated to be 3.8 × 10?8 M for Zn2+, 3.7 × 10?7 M for PPi and 4.9 × 10?7 M for S2?. The binding mechanism of QLNPY and Zn2+ was investigated through NMR, HR-MS analysis and further studied by crystallographic analysis. Additionally, further application of QLNPY for sequential bioimaging of Zn2+ and PPi was studied in HepG2 cells, suggesting that the quinoline-based chemosensor possesses great potential applications for the detection of intracellular Zn2+ and PPi in vivo.  相似文献   

4.
Abstract

Besides being of interest in photochemistry, photoinduced electron transfer (PET) is a process largely used in the design of fluorescent ion sensing molecules. One of the simplest systems is based on fluorescent aromatic groups linked to amino groups and proposed as possible fluorescent transition metal ion chemosensor [1]. In this case, the fluorescence of the fluorophore “ligths on” when the amino group is complexed. On the other hand, in the absence of metal ions, the fluorescence is quenched by a PET originating from the nitrogen lone electron pairs [2]. We prepared a new fluorescent chemosensor, abbreviated as Ant-NH-O-O-NH-Ant (shown in Fig. 1) in which the intramolecular PET is expected to be efficient. The chemosensor consists of a metal-binding dioxodiamino unit linked to two light-emitting anthracene fragments. This type of supramolecules when irradiated in methanol solution (conc. 1.89—10?5 M.) at 368 nm displays a characteristic fluorescence spectrum for anthracene group with the most intensive band at 415 nm [Fig. 2(a)]. The emission is slightly enhanced upon coordination of such metal ions as Ni2+ and Zn2+ by the ligand fragment of the Ant-NH-O-O-NH-Ant molecule [Fig. 2(b) and (d)]. However, much higher intensity of emission is observed in the case of Cu2+ complex [see Fig 2(c)]. The fluorescence enhancement is presumably due to suppression of photoinduced fluorophore-to-metal electron-transfer mechanism.  相似文献   

5.
A new simple receptor 1 based on aminosalicylimine was prepared. It exhibited an ‘off–on fluorescence type’ mode with high sensitivity in the presence of Zn2+. In particular, this chemosensor could clearly distinguish Zn2+ from Cd2+. Also, it could be a reusable chemosensor because the addition of EDTA quenched the fluorescence of the Zn2+-2·1 complex. Furthermore, receptor 1 had a sufficiently low detection limit (68 nM) in aqueous solutions, which implies that 1 could sense the nanomolar concentration of Zn2+. Therefore, this sensor has the ability to be a practical system for the monitoring of Zn2+ concentrations in aqueous samples.  相似文献   

6.
Aasif Helal 《Tetrahedron》2010,66(52):9925-9932
A new thiazole sulfonamide (TTP, 1) based Zn2+ selective intrinsic chemosensor has been synthesized and investigated. The chemosensor shows a selective fluorescence enhancement (3.0 fold) with Zn2+ over biologically relevant cations (Ca2+, Mg2+, Na+, and K+) and biologically non-relevant cations (Cd2+) in an aqueous ethanol system. It produces an increase in the quantum yield and a longer emission wavelength shift (64 nm) on Zn2+ binding with the potential of a ratiometric assay.  相似文献   

7.
We have developed a FRET-based ratiometric fluorescent probe for the detection of CN using a fluorescein–Zn–naphthalene ensemble (NFH·Zn2+). The sensing mechanism was ascribed by displacement approach. The chemosensor exhibits high selectivity and sensibility for CN. The speculation was supported by fluorescence emission spectra, UV–vis spectrum, 1H NMR titration experiments, and mass spectra. The interconversion of probe NFH and NFH·Zn2+ via the complexation/decomplexation by the modulation of Zn2+/CN mimics INHIBIT gate. In addition, it also shows an excellent performance in ‘dip stick’ method.  相似文献   

8.
A novel rhodamine-based chemosensor (R) was designed and synthesised for selective recognition of Hg2+ ion in real water samples collected from different places. The chemosensor was prepared in green condition with high yield. The selectivity of R was examined with various metal ions, among which only Hg2+ was identified selectively with offon mechanism along with enhancement of fluorescence. Metal ions recognition has been carried out using UV–vis and fluorescence studies taking µM concentration of chemosensor R in HEPES buffer. The detection limit of R was calculated and found to be 4.4 × 10–9 M. Quantum chemical (DFT) calculation was carried out in order to acquire knowledge about the stability of R in presence of Hg2+ ions. Cell viability and fluorescence microscopic experiments showed R as cytocompatible and can be used as a fluorescent probe for detecting Hg2+ in living cells.  相似文献   

9.
We have successfully developed a ‘turn-on’ colorimetric chemosensor for Fe3+ based on 1,10-phenanthroline. An amide derivative of 1,10-phenanthroline 4 was developed for the selective recognition of Fe3+ over Co2+, Cr3+, Cu2+, Mn2+, Ni2+, Ag+ and Zn2+ and could measure Fe3+ concentration in the range of 15–210 μM by UV–vis spectroscopy. Moreover, the addition of Fe3+ to a colourless solution of 4 turned its colour to light pink, indicating that 4 is capable of detecting Fe3+ by the naked eye. Compound 4 exhibits a major absorption band centred at 268 which shifted to 278 nm after addition of Fe3+, and a shoulder band around 514 nm was also observed. The complexation of Fe3+ with 4 was analysed at a different pH and favourable binding was observed at pH 6.2.  相似文献   

10.
设计合成了识别Zn2+的荧光传感分子--2-羟基-1-萘甲醛缩-2-萘甲酰腙(3)。 通过红外光谱、核磁共振谱和质谱测试技术表征了其结构。 利用其光谱性质研究了该物质对几种过渡金属离子的识别性质,初步探讨了其结合模式。 结果表明,在乙腈介质中,受体分子3表现出对Zn2+良好的选择性,Zn2+的加入导致受体分子3的吸收光谱在435 nm处出现1新峰,其吸光度逐渐增强,同时于239、302、330、342和387 nm处观察到5个清晰的等吸收点;在516 nm处荧光增强101倍,而其它过渡金属只引起受体分子]3的荧光略微增强。 Job法实验揭示受体分子3与Zn2+的结合比为1∶1。  相似文献   

11.
A new ratiometric fluorescent chemosensor based on a polyimine macrocycle ligand 1 has been synthesized. The chemosensor can exhibit a pronounced fluorescence response and high selectivity to Zn2+ ion over other 15 metal ions, including Cd2+. Sensor 1 appears an emission peak at 370 nm. Upon the addition of Zn2+ ion, the typical emission peak for 1 at 370 nm is obviously quenched, but a new emission peak at around 470 nm appears and shows a large enhancement due to the formation of a 1:1 Zn2+-1 complex. In addition, there is a good linear relationship between the fluorescence ratio I470nm/I370nm and the concentration of Zn2+, which makes a ratiometric assay of Zn2+ ion possible.  相似文献   

12.
A novel fluorescence chemosensor 1 based on (R)‐binaphthyl‐salen can exhibit highly sensitive and selective recognition responses toward Cu2+ by "turn‐off" fluorescence quench type in THF/H2O, and Zn2+ by "turn‐on" fluorescence enhancement type in CHCl3/CH3CN, respectively, suggesting that solvents can dramatically affect the responsive properties of salen‐based chemosensor. In addition, Cu2+ can lead to the most pronounced changes of CD spectra without the influence of solvents, which indicates this kind chemosensor can also be used as a sole Cu2+ probe based on CD spectra.  相似文献   

13.
Abstract

The fluorescent sensor (3) based on the 1,3-alternate conformation of the thiacalix[4]arene bearing the coumarin fluorophore, appended via an imino group, has been synthesised. Sensing properties were evaluated in terms of a colorimetric and fluorescence sensor for Zn2+ and F?. High selectivity and excellent sensitivity were exhibited, and ‘off-on’ optical behaviour in different media was observed. All changes were visible to the naked eye, whilst the presence of the Zn2+ and F? induces fluorescence enhancement and the formation of a 1:1 complex with 3. In addition, 3 exhibits low cytotoxicity and good cell permeability and can readily be employed for assessing the change of intracellular levels of Zn2+ and F?.  相似文献   

14.
A new bisthiazole chemosensor (3) with phenolic substituents at the position 2 of the thiazole rings was prepared. The chemosensor 3 acts as a potential dual-function fluorescence chemosensor with Cu2+ and Zn2+ ions causing complete quenching and ratiometric change of fluorescence, respectively. The mechanism of fluorescence was based on the cation-induced inhibition of excited-state intramolecular proton transfer (ESIPT).  相似文献   

15.
Fluorescence imaging is a powerful tool for the visualization of biological molecules in living cells, tissue slices, and whole bodies, and is important for elucidating biological phenomena. Furthermore, zinc (Zn2+) is the second most abundant heavy metal ion in the human body after iron, and detection of chelatable Zn2+ in biological studies has attracted much attention. Herein, we present a novel, highly sensitive off–on fluorescent chemosensor for Zn2+ by using the internal charge transfer (ICT) mechanism. The rationale of our approach to highly sensitive sensor molecules is as follows. If fluorescence can be completely quenched in the absence of Zn2+, chemosensors would offer a better signal‐to‐noise ratio. However, it is difficult to quench the fluorescence completely before Zn2+ binding, and most sensor molecules still show very weak fluorescence in the absence of Zn2+. But even though the sensor shows a weak fluorescence in the absence of Zn2+, this fluorescence can be further suppressed by selecting an excitation wavelength that is barely absorbed by the Zn2+‐free sensor molecule. Focusing on careful control of ICT within the 4‐amino‐1,8‐naphthalimide dye platform, we designed and synthesized a new chemosensor ( 1 ) that shows a pronounced fluorescence enhancement with a blueshift in the absorption spectrum upon addition of Zn2+. The usefulness of 1 for monitoring Zn2+ changes was confirmed in living HeLa cells. There have been several reports on 4‐amino‐1,8‐naphthalimide‐based fluorescent sensor molecules. However, 1 is the first Zn2+‐sensitive off–on fluorescent sensor molecule that employs the ICT mechanism; most off–on sensor molecules for Zn2+ employ the photoinduced electron transfer (PeT) mechanism.  相似文献   

16.
A new azoimine receptor, R1, was synthesized by Schiff base condensation of 4-(4-butylphenyl) azophenol and 2,6-diaminopyridine and acts as a colorimetric and fluorometric chemosensor for F? and also toward Cu2+ ions in aqueous environment. UV–Vis absorption and fluorescent emission spectra were employed to study the sensing process. Emission study was performed to examine the dual sensing ability of the obtained probe with sequential addition of F? followed by Cu2+ and vice versa. The receptor is an efficient “ON–OFF” fluorescent probe for the fluoride ion. Also, R1 + F? operated as an “OFF–ON” fluorescent sensor for Cu2+ ions. Considering emission intensity and absorption wavelength for F? and Cu2+ ions, a molecular system was developed with the ability to mimic the functions of XNOR logic gating on the molecular level. In addition, R1 behaved as a molecular security keypad lock with F? and Cu2+ inputs. The keypad lock operation is particularly important, as the output of the system depends not only on the proper combination but also on the order of input signals, creating the correct password that can be used to “open” this molecular keypad lock through strong fluorescence emission at 460?nm.  相似文献   

17.
A colorimetric and fluorescent cyanide probe bearing naphthol and sulfahydrazone groups has been designed and synthesized. This structurally simple probe displays a rapid response and high selectivity for cyanide in DMSO/EtOH (v/v = 2:8) solution. The addition of CN? to the sensor p-toluenesulfonyl-2-hydroxy-1-naphthylhydrazone (L3) induced a remarkable color change from pale-yellow to yellow, and green fluorescence changed to yellow. The 1H NMR titration and DFT calculations suggested that the selective sensing process is based on a nucleophilic addition reaction of cyanide to imine. Test strips based on sensor L3 were fabricated, which could act as a convenient and efficient test kit to detect CN? for “in-the-field” measurements.  相似文献   

18.
A novel N-(3-aminopropyl)-imidazole-appended rhodamine-based fluorescent chemosensor was synthesized. The sensing behavior and selectivity of the synthesized chemosensor toward metal cations were studied by UV/vis and fluorescence spectroscopy. The chemosensor recognized Al3+ ions by a significantly enhanced fluorescence and a visible color change due to opening of the spirolactam ring triggered by the addition of Al3+ ions.  相似文献   

19.
Naphthalimide derivative (compound 1) containing hydrophilic hexanoic acid group was synthesized and used to recognize Hg2+ in aqueous solution. The fluorescence enhancement of 1 is attributed to the formation of a complex between 1 and Hg2+ by 1:1 complex ratio (K = 2.08 × 105), which has been utilized as the basis of fabrication of the Hg2+-sensitive fluorescent chemosensor. The comparison of this method with some other fluorescence methods for the determination of Hg2+ indicated that the method can be applied in aqueous solution rather than organic solution. The analytical performance characteristics of the proposed Hg2+-sensitive chemosensor were investigated. The chemosensor can be applied to the quantification of Hg2+ with a linear range covering from 2.57 × 10−7 to 9.27 × 10−5 M and a detection limit of 4.93 × 10−8 M. The experiment results show that the response behavior of 1 toward Hg2+ is pH independent in medium condition (pH 4.0–8.0). Most importantly, the fluorescence changes of the chemosensor are remarkably specific for Hg2+ in the presence of other metal ions, which meet the selective requirements for practical application. Moreover, the response of the chemosensor toward Hg2+ is fast (response time less than 1 min). In addition, the chemosensor has been used for determination of Hg2+ in hair samples with satisfactory results, which further demonstrates its value of practical applications.  相似文献   

20.
Zinc ion (Zn2+) is an important and a most useful biological trace nutrient responsible for the activity of several enzymes. Zn2+ concentrations in the environment as well as in the human body increase beyond permissible limits as a consequence of its mining and widespread industrial applications. Such excess Zn2+ concentrations are toxic to humans and many aquatic organisms. The magnetic inertness and spin paired electronic configuration of Zn2+ makes it hard to detect by common analytical techniques. Therefore, fluorometric detection using chemosensor is the most effective tool for the environmental and biological detection of Zn2+. We have developed a novel pyridine-constrained bis(triazole-linked hydroxyquinoline) ligand as a reversible fluorescent chemosensor for Zn2+. The symmetrical ligand is highly selective for Zn2+ and fluoresces brightly upon complexation compared with other metal ions based on chelation-enhanced fluorescence mechanism. Interestingly, free ligand can be regenerated by treating the ligand–Zn2+ complex with aqueous ammonia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号