首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
A new method for quick chitin isolation from the shells of crab, crayfish and shrimp is described. The main difference between the new method and the conventional method is two sodium hypochlorite (NaClO) treatments for 10 min each before the processes of demineralisation and deproteinisation. After the NaClO treatment, only 15 min is adequate for the demineralisation and 20 min for the deproteinisation processes. Newly extracted chitin from crab, crayfish and shrimp shells and commercial chitin were characterised using FT-IR, TGA, X-ray diffractometry and elemental analysis. From the results, it was observed that the chitins isolated with the new method and the commercial chitin had almost the same physicochemical properties. The advantage of the new method compared to traditional methods is the relatively rapid chitin extraction. When compared to the traditional chitin extraction method, the proposed method appears to be promising regarding its time and energy saving nature.  相似文献   

2.
There is an emerging trend in the valorization of biomass waste for the development of value-added products. Date palm biomass is an extensively available bioresource in Saudi Arabia. In date palm farms, the biomass residues are usually burnt, and a lot of ash is generated. Biomass ash is rich in silica, which is a valuable material used in a wide range of applications. This study explores the extraction of pure silica nanoparticles from date palm biomass ash (DPBA) and its application in photocatalysis. A chemical sol–gel method or thermal combustion method was employed for the extraction of silica. The extracted silica nanoparticles were characterized by EDX, FT-IR, XRD, SEM, BET, and TGA. FT-IR spectra of extracted biosilica samples displayed only the characteristic peaks corresponding to the silica functional groups. The chemically synthesized biosilica sample exhibited higher purity (98 %) and higher surface area (376 m2/g) compared to the thermally prepared biosilica samples. The SEM analysis revealed the presence of spherical-shaped silica particles of an average diameter of 93 nm in chemically extracted biosilica and 208 nm in thermally extracted biosilica. The newly extracted biosilica samples were tested for the photodegradation of the bromophenol blue dye in water. The dye degradation efficiency of chemically prepared biosilica sample was 82 % and that of thermally prepared biosilica sample was 74 %. The relatively higher degradation efficiency of BS-chemical could be due to its higher surface area and smaller particle size, and also due to the presence of lots of surface defects in this fully amorphous biosilica.  相似文献   

3.
The contents of the exoskeleton of Parapenaeus longirostris from Moroccan local sources were analyzed and the percentages of inorganic salt, protein, lipid, and chitin were determined. Chitin in the α form was extracted from Parapenaeus longirostris shells by 0.25 M HCl and 1 M NaOH treatment for demineralization and deproteinization, respectively. The obtained chitin was converted into the more useful soluble chitosan. The chemical structure and physico-chemical properties of chitin and chitosan were characterized using Fourier transform-infrared (FT-IR) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, X-ray diffractometry (XRD), and scanning electron microscopy (SEM). The molecular weight (MW) of chitosan was determined by viscometric methods. The degree of acetylation (DA) of chitin and chitosan was determined by the 1H NMR technique. To the best of our knowledge this is the first report on the extraction and characterization of chitin and chitosan from Parapenaeus longirostris.  相似文献   

4.
Nickel lysine salen complex was successfully synthesized via a stepwise procedure and applied as a heterogeneous catalyst for styrene epoxidation. For comparison, several other transition metal (Mn, Fe, Co, and Cu) lysine salen complexes were also synthesized. The prepared catalysts were characterized by Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX). Data obtained by FT-IR and Raman spectroscopy indicated the formation of C=N bonds and the complexation of these bonds with metal ions. SEM analysis revealed that the complexation of metal ions with the C=N involves the change in surface morphology of samples. In addition, atomic percent composition of samples was obtained from EDX spectra, which was the complementary evidence for the formation of complexes. Results of catalytic measurements showed that a high conversion of styrene (91.51%) and selectivity to styrene oxide (91.99%) could be achieved over the nickel lysine salen complex with tert-butyl hydroperoxide as the oxidant. When the catalyst was reused the conversion of styrene decreased but the selectivity to styrene oxide still remained high.  相似文献   

5.
Lichens are symbiotic associations formed mainly by ascomycete fungi and green algae or cyanobacteria. The presence of chitin in the fungal cell wall has been revealed by previous studies. Considering the presence of fungi in the lichens, this work determines the presence of chitin in a cosmopolitan lichen species Xanthoria parietina. In this study, chitin was derived from a lichen species for the first time and its physicochemical properties were determined by Fourier transform infrared spectroscopy, thermogravimetric analysis, X-ray diffraction, scanning electron microscopy and elemental analysis. The dry weight chitin content of X. parietina was 4.23%, and this chitin was in the α-form. The crystalline index value of the lichen chitin was calculated as 70.1%. The chitin from X. parietina had a smooth surface.  相似文献   

6.
A solvent-stable protease-producing bacterium was isolated and identified as Pseudomonas aeruginosa A2. The strain was found to produce high level of protease activity when grown in media containing only fresh shrimp waste (FSW) or shrimp waste powder (SWP), indicating that it can obtain its carbon, nitrogen, and salts requirements directly from shrimp waste. Maximum protease activities 17,000 and 12,000 U/mL were obtained with 80 g/L SWP and 135 g/L FSW, respectively. The optimum temperature and pH for protease activity were 60 °C and 8.0, respectively. The crude protease, at different enzyme/substrate (E/S) ratio, was tested for the deproteinization of shrimp waste to produce chitin. The crude enzyme of P. aeruginosa A2 was found to be effective in the deproteinization of shrimp waste. The protein removals after 3 h hydrolysis at 40 °C with an E/S ratio of 0.5 and 5 U/mg protein were about 56% and 85%, respectively. 13C CP/MAS-NMR spectral analysis of the chitin prepared by treatment with the crude protease was carried out and was found to be similar to that of the commercial α-chitin. These results suggest that enzymatic deproteinization of shrimp waste by A2 protease could be applicable to the chitin production process.  相似文献   

7.
Immobilization of biologically important molecules on myriad nano-sized materials has attracted great attention. Through this study, thermophilic esterase enzyme was obtained using recombinant DNA technology and purified applying one-step His-Select HF nickel affinity gel. The synthesis of chitosan was achieved from chitin by deacetylation process and degree of deacetylation was calculated as 89% by elemental analysis. Chitosan nanoparticles were prepared based on the ionic gelation of chitosan with tripolyphosphate anions. The physicochemical properties of the chitosan and chitosan nanoparticles were determined by several methods including SEM (Scanning Electron Microscopy), FT-IR (Fourier Transform Infrared Spectroscopy) and DLS (Dynamic Light Scattering). The morphology of chitosan nanoparticles was spherical and the nanospheres’ average diameter was 75.3 nm. The purified recombinant esterase was immobilized efficiently by physical adsorption onto chitosan nanoparticles and effects of various immobilization conditions were investigated in details to develope highly cost-effective esterase as a biocatalyst to be utilized in biotechnological purposes. The optimal conditions of immobilization were determined as follows; 1.0 mg/mL of recombinant esterase was immobilized on 1.5 mg chitosan nanoparticles for 30 min at 60°C, pH 7.0 under 100 rpm stirring speed. Under optimized conditions, immobilized recombinant esterase activity yield was 88.5%. The physicochemical characterization of enzyme immobilized chitosan nanoparticles was analyzed by SEM, FT-IR and AFM (Atomic Force Microscopy).  相似文献   

8.
Zinc oxide@carbon quantum dots (ZnO@CQDs) nanocomposite was prepared via a facile hydrothermal method. Characterization of the obtained samples was carried out by Scanning electron microscopy-EDX(SEM–EDX), Transmission electron microscopy (TEM), X-ray diffraction (XRD), Photoluminescence (PL), and Fourier transformed infrared spectroscopy (FT-IR). These results revealed that we have prepared ZnO@CQDs nanocomposite successfully. Our study revealed that the antibacterial efficiency (against S.aureus and E.coli) under visible light irradiation of as prepared ZnO@CQDs nanocomposite was higher than pure ZnO nanoparticles. The ZnO@CQDs nanocomposite showed excellent antibacterial activity against Gram-negative and Gram-positive bacteria with a minimal inhibitory concentration (6–8 mg/mL) against to E.coli and S.aureus. We also tested the light response of ZnO@CQDs under UV–vis light, by calculating its band gap data, after decorated with CQDs, the band gap of the pure ZnO can significantly decreased from 2.57 eV to 2.50 eV. The ZnO decorated by CQDs can both enhance the light absorption and suppress photogenerated electron–hole's recombination which results in the enhancement of antibacterial properties.  相似文献   

9.
Chitin is a polysaccharide found in abundance in the shell of crustaceans. In this study, the protease from Bacillus cereus SV1 was applied for chitin extraction from shrimp waste material of Metapenaeus monoceros. A high level of deproteinization 88.8% ± 0.4 was recorded with an E/S ratio of 20. The demineralization was completely achieved within 6 h at room temperature in HCl 1.25 M, and the residual content of calcium in chitin was below 0.01%. 13C CP/MAS-NMR spectral analysis of chitin prepared by the enzymatic deproteinization of shrimp wastes was found to be similar to that obtained by alkaline treatment and to the commercial α-chitin. The degree of N-acetylation, calculated from the spectrum, was 89.5%. Chitin obtained by treatment with crude protease from B. cereus was converted to chitosan by N-deacetylation, and the antibacterial activity of chitosan solution against different bacteria was investigated. Results showed that chitosan solution at 50 mg/mL markedly inhibited the growth of most Gram-negative and Gram-positive bacteria tested. Furthermore, the antioxidant potential of the protein hydrolysates obtained during enzymatic isolation of chitin was evaluated using various in vitro assays. All the samples exerted remarkable antioxidant activities. These results suggest that enzymatic deproteinization of the shrimp shell wastes, using B. cereus SV1 protease, could be applicable to the chitin production process.  相似文献   

10.
Insect chitin was isolated from adult Holotrichia parallela by treatment with 1 M HCl and 1 M NaOH, following by 1% potassium permanganate solution for decolorization. The yield of chitin from this species is 15%. This insect chitin was compared with the commercial a-chitin from shrimp, by infrared spectroscopy, X-ray diffraction, scanning electron microscopy, and elemental analysis. Both chitins exhibited similar chemical structures and physicochemical properties. Adult H. parallela is thus a promising alternative source of chitin.  相似文献   

11.
Accurate determination of chitin and protein contents in crustacean biomass and the intermediate products during the industrial isolation of chitin cannot be made directly from the total nitrogen content, unless the appropriate corrections are applied. This method, however, is affected by the presence of other nitrogen-containing chemical species that are formed endogenously or by the action of microorganisms during the handling of the sample. Therefore, an alternative rapid method to estimate the contents of these components can be very useful both in research and in various fields of application. An original method has been developed to address this problem. The method consists of the development of a set of equations based on the stoichiometric contents of nitrogen of chitin and protein whereby the amounts of each component can be estimated from the value of the total nitrogen content, provided the rest of the proximate composition of the sample is accurately known. In order to validate the procedure, a set of model mixtures of pure chitin and protein concentrate in the solid state, both extracted from shrimp head waste, are used. Excellent agreement between the predicted and real values of chitin and protein are obtained (R2=0.98, slope=0.90). When the proposed method is tested in the analysis of real samples obtained from five different processing protocols of pretreatment of raw shrimp head, it is found that in general the values of protein and chitin contents throughout the various stages of the process vary as expected. [GRAPH: SEE TEXT] Variation of the measured total nitrogen versus calculated stoichiometric total nitrogen of the chitin-protein mixtures.  相似文献   

12.
The investigation of unmatched ancient objects is an attentive and arduous activity to conservation scientists. An important aspect of art analysis is the question on sampling and avoiding damage on the artefact during the study. A possible way to maximize the information that is extracted from the historical object is using several sensitive micro-analytical techniques on the same micro samples. As an illustration of this multi-method approach, in this work, a canvas painting ‘Virgin of Sorrows’ was studied and its materials were analysed in order to roughly date and to authenticate this object of art. Proton induced X-ray emission (PIXE), neutron activation analysis (NAA), optical microscopy, scanning electron microscopy (SEM), micro-Raman spectroscopy (MRS) and Fourier transform infrared spectroscopy (FT-IR) were used, obtaining successful results. These methods allowed identifying the different inorganic pigments (iron oxide, carbon black, white lead, Prussian blue) as well as indigo. Optical microscopy and SEM revealed the layered structure of the samples, while FT-IR enabled to determine the nature of the varnish used (shellac). By using these complementary techniques, it was possible to identify the materials in the painting, which are indicative for the period of manufacturing the artwork.  相似文献   

13.
β-Chitin was isolated from squid pens, and the characteristic chemical and physical properties were elucidated in comparison with those of shrimp chitin, α-chitin. Deacetylation behavior of the squid chitin was first studied to look into the reactivity of β-chitin and also to establish an efficient procedure for preparing squid chitosan. The squid chitin proved to show much higher reactivity in alkaline deacetylation than shrimp chitin. Although it was deacetylated quite easily, the product assumed a dark brown color under the ordinary reaction conditions for shrimp chitosan. Squid chitosan was successfully prepared by repeated alkaline treatments under mild conditions, particularly with high concentration alkali at low temperatures, without appreciable discoloration. The structural characteristics of the squid chitin were discussed on the basis of the IR and x-ray analysis data. The crystalline structure of squid chitin was destroyed easily on deacetylation compared to that of shrimp chitin, and moreover, the resulting squid chitosan was amorphous unlike crystalline shrimp chitosan. The squid chitin was characterized by the remarkable affinity for organic solvents and water. Squid chitin and chitosan also showed much higher hygroscopicity and retention of the absorbed water than shrimp chitin and chitosan and are considered to be useful as highly hydrophilic materials. © 1993 John Wiley & Sons, Inc.  相似文献   

14.
In the present work four different biomass samples (pine cone, soybean cake, corn stalk and peanut shell) were pyrolyzed to 550 °C in an inert gas atmosphere and a comparison between the properties of chars produced has been performed. Characterization of biomass samples was carried out with FT-IR, 13C NMR, SEM and EDX. The influence of the parent material on char quality was investigated. The chars were characterized by their proximate and ultimate analysis and surface areas by N2 adsorption at 77 K using BET equation. The morphological changes in carbonaceous solids were observed by scanning electron microscopy (SEM), and FT-IR spectra were obtained to evaluate the functional groups. The results obtained from the different techniques were combined to give an overview of the chemical and physical properties of the biomass char samples.  相似文献   

15.
Aluminum composites with different amounts of exfoliated graphite nanoplatelets particles were fabricated by powder metallurgy method. The mixture powders were consolidated at 520 MPa for 5 min and followed by pressureless sintering at 600 °C for 6 h. The mechanical properties of composites were evaluated by compression and hardness tests. The corrosion behavior in 3.5% NaCl solution was investigated using potentiodynamic polarization (PDP) and electrochemical impedance spectroscopy (EIS) measurements. The mechanical testing results showed that the maximum strength and Vickers hardness increase as a function of exfoliated graphite nanoplatelets content. Corrosion data indicated that the presence of exfoliated graphite nanoplatelets and the increase of its concentration raise the corrosion rate and reduce the polarization resistance of Al. SEM/EDX investigations revealed that the presence of exfoliated graphite nanoplatelets activates the corrosion of Al due to the occurrence of galvanic corrosion. SEM/EDX investigations confirmed the electrochemical measurements showing that the increase of exfoliated graphite nanoplatelets content increases the corrosion of Al.  相似文献   

16.
The abundant biopolymer chitin, found mainly in crustaceous exoskeleton, such as crab, shrimp and lobster, can be deacetylated to yield chitosan. This slightly different biopolymer is more reactive than chitin, being more effective for many applications in fields as environmental remediation, biomedical sciences, catalysis and so on. The main process for chitin deacetylation used sodium hydroxide solutions at high temperatures for long times to obtain chitosan with high deacetylation degree (DD). The present study has evaluated the effect from room temperature (RT), 363 and 393 K, hydroxide concentration (2.0 or 10.0 mol dm3) and time (3 and 24 h) on shrimp chitin deacetylation. Similar amounts of chitin and sodium hydroxide solutions were stirred jointly and the resultant solids were filtered and washed until pH 7, than dried at environmental conditions. The obtained samples were characterized by several techniques, such as elemental analysis, X-rays diffraction (XRD), laser scattering and absorption spectroscopy at infrared region with Fourier transform (FTIR), which was used for DD calculation. The results showed that all chitin-chitosan samples did not reach DD > 90%, as observed for some good commercial chitosans. The highest DD was obtained by the sample prepared at more drastic conditions, as expected, however the higher sodium hydroxide concentration leads to decrease of molecular mass when associated with high temperatures. The crystallinity was influenced mostly by reaction time, which change the positions and intensities as indicated by XRD main peaks, located at 9.3 and 19.4° 2Θ. Particle sizes were strongly diminished by treatment at 393 K, what imply also some increase at the pressure, favoring chain dissociation reactions. This work mapped several properties for chitin-chitosan samples achieved by the described conditions.  相似文献   

17.
18.
The current increase in amount of shrimp wastes produced by the shrimp industry has led to the need in finding new methods for shrimp wastes disposal. In this study, an extracellular organic solvent- and oxidant-stable metalloprotease was produced by Bacillus cereus SV1. Maximum protease activity (5,900 U/mL) was obtained when the strain was grown in medium containing 40 g/L shrimp wastes powder as a sole carbon source. The optimum pH, optimum temperature, pH stability, and thermal stability of the crude enzyme preparation were pH 8.0, 60 °C, pH 6–9.5, and <55 °C, respectively. The crude protease was extremely stable toward several organic solvents. No loss of activity was observed even after 60 days of incubation at 30 °C in the presence of 50% (v/v) dimethyl sulfoxide and ethyl ether; the enzyme retained more than 70% of its original activity in the presence of ethanol and N,N-dimethylformamide. The protease showed high stability toward anionic (SDS) and non-ionic (Tween 80, Tween 20, and Triton X-100) surfactants. Interestingly, the activity of the enzyme was significantly enhanced by oxidizing agents. In addition, the enzyme showed excellent compatibility with some commercial liquid detergents. The protease of B. cereus SV1, produced under the optimal culture conditions, was tested for shrimp waste deproteinization in the preparation of chitin. The protein removal with a ratio E/S of 20 was about 88%. The novelties of the SV1 protease include its high stability to organic solvents and surfactants. These unique properties make it an ideal choice for application in detergent formulations and enzymatic peptide synthesis. In addition, the enzyme may find potential applications in the deproteinization of shrimp wastes to produce chitin.  相似文献   

19.
The oxidative dehydrogenation (ODH) of isobutane over pure ceria and phosphated ceria catalysts, containing two different amounts of phosphorus, was examined at temperatures ranging from 450 to 610 °C. The catalysts were characterized using nitrogen adsorption, DRX, SEM, EDX, XPS and TPR techniques. Adding phosphorus to ceria and increasing the phosphorus content results in a modification of the physicochemical characteristics of the catalyst, the redox ability of the catalytic material being strongly diminished. At the same time, by adding phosphorus to ceria and increasing the phosphorus content, a decrease of the catalytic activity accompanied by an important increase of the selectivity for isobutene, mainly at the expense of carbon oxides, was observed. A compensation effect in catalysis was also observed for the isobutane conversion on this series of catalysts.  相似文献   

20.
We describe here a one-step solid-state process for the synthesis of metal three-dimensional (3D) superstructures from a metal-organic framework (MOF). Novel symmetrical coralloid Cu 3D superstructures with surface interspersed with clusters of Cu nanoparticles were successfully synthesized by thermolysis of the [Cu3(btc)2] (btc=benzene-1,3,5-tricarboxylato) MOF in a one-end closed horizontal tube furnace (OCTF). The obtained products were characterized by TGA, FT-IR, XRD, EDX, SEM, TEM, HRTEM and SAED. Different reaction conditions were discussed. Furthermore, the synthesized Cu samples were converted into CuO microstructures by in-situ calcination in the air. In addition, the possible formation mechanism was also proposed. This method is a simple and facile route, which builds a direct linkage between metal-carboxylate MOF crystals and metal nano- or microstructures and also opens a new application field of MOFs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号