首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A 3D metal ion assisted assembly of nanoparticles has been developed. The approach relies on the efficient complexation of cadmium ions and 5-mercaptomethyltetrazole employed as the stabilizer of both colloidal CdTe and Au nanoparticles. It enables in a facile way the formation of hybrid metal-semiconductor 3D structures with controllable and tunable composition in aqueous media. By means of critical point drying, these assemblies form highly porous aerogels. The hybrid architectures obtained are characterized by electron microscopy, nitrogen adsorption, and optical spectroscopy methods.  相似文献   

2.
A novel approach to synthesize Au/TiO2 nanostructures with interesting optical properties is presented and discussed. It is based on the nanoparticle “cold” or “hot” nanosoldering occurring when two water suspensions of Au and TiO2 nanoparticles are merely mixed at room temperature or laser irradiated after mixing.Thanks to the high fraction and mutual reactivity of surface species, immediately after the mixing process, the encounters between Au and TiO2 nanoparticles in liquid phase are enough for “cold” nanosoldering of gold nanoparticles onto TiO2 nanoparticles to occur. The optical characterizations show that this fast process (timescale less than 1 min) is followed by a slower process, attributable to some change of the Au nanoparticles. This latter process is significantly accelerated by the 532 nm laser light illumination. The structural and optical properties of “cold” and “hot” nanosoldered Au-TiO2 nanoparticles were investigated by TEM, UV-vis and fluorescence spectroscopies.Interesting optical limiting response was detected at laser fluences above 0.8 J/cm2. The nature of the nonlinear effect was investigated by the Z-scan technique, determining both the nonlinear absorption coefficient and the refraction index. Such interesting non-linear optical properties are worth to be tailored for specific applications.  相似文献   

3.
We herein report a nanoparticle-directed therapeutic approach to breast cancer using Ag-CuO hybrid nanoparticles. The nanoparticles were synthesized through redox-mediated process involving reduction of silver ion on the surface of Cu2O nanostructures. Structural, microstructural and optical characterization were carried out and the hybrid nanoparticles were found to be phase pure with crystallite size between 100–200 nm and the absorption due to surface plasmon resonance from silver was observed around 460 nm. The binding affinities of the hybrid nanoparticles with the plasma protein BSA and calf thymus DNA were studied and the respective binding constants were found to be 5.1 × 104 and 1.12 × 105 M−1 showing appreciable binding affinity of the substrate. The cytotoxicity of the as-synthesized hybrid nanoparticles induced in breast cancer cells was evaluated in vitro and the obtained results demonstrates the potential anti-cancer activity of the Ag-CuO hybrid nanoparticles against the MCF-7 breast cancer cell line.  相似文献   

4.
A high‐efficiency nanoelectrocatalyst based on high‐density Au/Pt hybrid nanoparticles supported on a silica nanosphere (Au‐Pt/SiO2) has been prepared by a facile wet chemical method. Scanning electron microscopy, transmission electron microscopy, energy‐dispersive X‐ray spectroscopy, and X‐ray photoelectron spectroscopy are employed to characterize the obtained Au‐Pt/SiO2. It was found that each hybrid nanosphere is composed of high‐density small Au/Pt hybrid nanoparticles with rough surfaces. These small Au/Pt hybrid nanoparticles interconnect and form a porous nanostructure, which provides highly accessible activity sites, as required for high electrocatalytic activity. We suggest that the particular morphology of the Au‐Pt/SiO2 may be the reason for the high catalytic activity. Thus, this hybrid nanomaterial may find a potential application in fuel cells.  相似文献   

5.
A new prototype consisting of ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles decorated with europium(III) ions encapsulated in a DO3A organic scaffold was designed as a platform for further development of bimodal contrast agents for MRI and optical imaging. The USPIO nanoparticles act as negative MRI contrast agents, whereas the europium(III) ion is a luminophore that is suitable for use in optical imaging detection. The functionalized USPIO nanoparticles were characterized by TEM, DLS, XRD, FTIR, and TXRF analysis, and a full investigation of the relaxometric and optical properties was conducted. The typical luminescence emission of europium(III) was observed and the main red emission wavelength was found at 614 nm. The relaxometric study of these ultrasmall nanoparticles showed r2 values of 114.8 mm ?1Fes?1 at 60 MHz, which is nearly double the r2 relaxivity of Sinerem®.  相似文献   

6.
Understanding how the spatial ordering of liquid crystalline nanoparticles can be controlled by different factors is of great importance in the further development of their photonic applications. In this paper, we report a new key parameter to control the mesogenic behavior of gold nanoparticles modified by rodlike thiols. An efficient method to control the spatial arrangement of hybrid nanoparticles in a condensed state is developed by changing the composition of the mesogenic grafting layer on the surface of the nanoparticles. The composition can be tuned by different conditions of the ligand exchange reaction. The thermal and optical behavior of the mesogenic and promesogenic ligands were investigated by using differential scanning calorimetry (DSC) and hot‐stage polarized optical microscopy. The chemical structure of the synthesized hybrid nanoparticles was characterized by 1H NMR spectroscopy, thermogravimetric analysis (TGA), XPS, and elemental analysis, whereas the superstructures were examined by small‐angle X‐ray diffraction (SAXSRD) analysis. Structural studies showed that the organic sublayer made of mesogenic ligands is denser with an increasing the average ligand number, thereby separating the nanoparticles in the liquid crystalline phases, which changes the parameters of these phases.  相似文献   

7.
结合耗散粒子动力学模拟和时域有限差分方法,研究了A(BC)_n多嵌段共聚物和纳米粒子共混体系的自组装行为及其光学性能,分析了纳米粒子体积分数和嵌段间相互作用强度对自组装形貌及其光学性能的影响。结果表明,A(BC)_n多嵌段共聚物/纳米粒子共混体系可形成有机/无机杂化的多级结构,改变纳米粒子的体积分数和嵌段间相互作用强度可以调控纳米粒子的分布及其相应的多级结构。不同尺度的结构对不同频率光的反射作用有明显区别,而纳米粒子的加入显著增大了反射峰的强度和宽度。改变纳米粒子的分布可调控反射峰的强度和宽度。  相似文献   

8.
Considerable attention has been paid to hybrid organic–inorganic nanocomposites for designing new optical materials. Herein, we demonstrate the energy and hole transfer of hybrid hole‐transporting α‐sexithiophene (α‐STH) nanoparticle–CdTe quantum dot (QD) nanocomposites using steady‐state and time‐resolved spectroscopy. Absorption and photoluminescence studies confirm the loss of planarity of the α‐sexithiophene molecule due to the formation of polymer nanoparticles. Upon photoexcitation at 370 nm, a nonradiative energy transfer (73 %) occurs from the hole‐transporting α‐STH nanoparticles to the CdTe nanoparticles with a rate of energy transfer of 6.13×109 s?1. However, photoluminescence quenching of the CdTe QDs in the presence of the hole‐transporting α‐STH nanoparticles is observed at 490 nm excitation, which is due to both static‐quenching and hole‐transfer‐based dynamic‐quenching phenomena. The calculated hole‐transporting rate is 7.13×107 s?1 in the presence of 42×10?8 M α‐STH nanoparticles. Our findings suggest that the interest in α‐sexithiophene (α‐STH) nanoparticle–CdTe QD hybrid nanocomposites might grow in the coming years because of various potential applications, such as solar cells, optoelectronic devices, and so on.  相似文献   

9.
TiO2/organically modified silane organic–inorganic hybrid films doped with different disperse red 1 contents are prepared by combining a low-temperature sol–gel method and a spin-coating process. Effects of the disperse red 1 content on the third-order nonlinear and the planar waveguide properties of the hybrid films are also studied by a z-scan technique and a prism coupling technique. Results indicate that the nonlinear refractive index of the hybrid films is negative, whose magnitude is of the order of 10−8 esu for the measured samples. It is suggested that both the thermal effect and the photoisomerization process contribute to the third-order nonlinear optical properties of the hybrid films jointly. It is also found that the refractive index and the thickness of the hybrid films decrease with an increase of the temperature as the independent variable. In addition to, optical absorption properties of the hybrid films are characterized by UV–Visible spectroscopy. These results indicate that the as-prepared hybrid films are promising candidates for photonic applications.  相似文献   

10.
In this work, we compared formation and properties of heat‐treated Ag nanoparticles in silica matrix synthesized by RF‐reactive magnetron cosputtering and sol–gel methods separately. The sol–gel and sputtered films were annealed at different temperatures in air and in a reduced environment, respectively. The optical UV‐visible spectrophotometry have shown that the absorption peak appears at 456 and 400 nm wavelength indicating formation of silver nanoparticles in SiO2 matrix for both the sol–gel and sputtering methods at 100 and 800 °C, respectively. XPS measurements showed that the metallic Ag0 nanoparticles can be obtained from both the techniques at these temperatures. According to XPS and AFM analysis, by increasing annealing temperature, the concentration of the Ag nanoparticles on the surface decreased and the nanoparticles diffused into the substrate for the sol–gel films, while for the films deposited by cosputtering method, the Ag surface concentration increased by increasing the temperature. Based on AFM observations, the size of nanoparticles on the surface were obtained at about 25 and 55 nm for sputtered and sol–gel films, respectively, supporting our optical data analysis. In comparison, the sputtering technique can produce Ag metallic nanoparticles with a narrower particle size distribution relative to the sol–gel method. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
Based on the preparation of biocompatible polysaccharide-based hydrogels with stimuli-responsive properties by the copolymerization of maleilated carboxymethyl chitosan with N-isopropylacrylamide, novel magnetic hybrid hydrogels were fabricated by the in situ embedding of magnetic iron oxide nanoparticles into the porous hydrogel networks. Scanning electron microscopy (SEM) and thermogravimetric (TG) analyses showed that the size, morphology, and content of the iron oxide nanoparticles formed could be modulated by controlling the amount of maleilated carboxymethyl chitosan. As confirmed by X-ray diffractometry (XRD), equilibrium swelling ratio, and differential scanning calorimetry (DSC) measurements, the embedding process did not induce a phase change of the magnetic iron oxide nanoparticles, and the resultant hybrid hydrogels could retain the pH- and temperature-responsive characteristics of their hydrogel precursors. By investigating the partition coefficients of bovine serum albumin as a model protein, this magnetic hydrogel material was found to hold a potential application in magnetically assisted bioseparation.  相似文献   

12.
Herein, an approach is reported to prepare porous a carbon/Ge (C/Ge) hybrid. In this hybrid, Ge nanoparticles are closely embedded in a highly conductive and flexible carbon matrix. Such a hybrid features a high surface area (128.0 m2 g?1) and a hierarchical micropore–mesopore structure. When used as an anode material in lithium‐ion batteries (LIBs), the as‐prepared hybrid [C/Ge (60.37 %)] exhibits an improved lithium storage performance with regard to its capacity and rate capability compared to its counterparts. More specifically, it can maintain a specific capacity as high as 906 mAh g?1 at a high current density of 0.6 A g?1 after 50 cycles. The excellent lithium storage performance of the C/Ge (60.37 %) sample can be attributed to synergetic effects between the carbon matrix and Ge nanoparticles. The method we adopted is simple and effective, and can be extended to fabricate other nanomaterials.  相似文献   

13.
We report the structural, thermal, optical, and redox properties of Fe‐doped cerium oxide (CeO2) nanoparticles, obtained using the polyol‐co‐precipitation process. X‐ray diffraction data reveal the formation of single‐phase structurally isomorphous CeO2. The presence of Fe3+ may act as electron acceptor and/or hole donor, facilitating longer lived charge carrier separation in Fe‐doped CeO2 nanoparticles as confirmed by optical band gap energy. The increased content of localized defect states in the ceria gap and corresponding shift of the optical absorption edge towards visible range in Fe‐doped samples can significantly improve the optical activity of nanocrystalline ceria. The better‐quality redox performances of the Fe‐doped CeO2 nanoparticles, compared with undoped CeO2 nanoparticles, were ascribed mainly to a decrease in band gap energy and an increase in specific surface area of the material. As observed from TPR studies all Fe ‐doped CeO2 nanoparticles, particularly the 10 mol % Fe doped CeO2 nanoproduct, exhibit excellent reduction performance.  相似文献   

14.

The present study aims to enhance the hydrothermal performance of a porous sinusoidal double-layered heat sink using nanofluid. The optimum thickness of metal foam (nickel) for different Reynolds numbers ranging from 10 to 100 for the laminar regime and Darcy numbers ranging from 10?4 to 10?2 is obtained. At the optimum porous thicknesses, nanofluid (silver–water) with three volume fractions of nanoparticles equal to 2, 3, and 4% is employed to enhance the heat sink thermal performance. Darcy–Brinkman–Forchheimer model and the local thermal non-equilibrium model or two equations method are employed to model the momentum equation and energy equations in the porous region, respectively. It was found that in the cases of Darcy numbers 10?4, 10?3, and 10?2 the dimensionless optimum porous thicknesses are 0.8, 0.8, and 0.2, respectively. It was also obtained that the maximum PEC number is 2.12 and it corresponds to the case with Darcy number 10?2, Reynolds number 40, and volume fraction of nanoparticles 0.04. The validity of local thermal equilibrium (LTE) assumption was investigated, and it was found that increasing the Darcy number which results in an enhancement in porous particle diameter leads to some errors in results, under LTE condition.

  相似文献   

15.
The preparation of size‐controllable Fe2O3 nanoparticles grown in nanoporous carbon with tuneable pore diameters is reported. These hybrid materials exhibit strong non‐linear magnetic properties and a magnetic moment of approximately 229 emu g?1, which is the highest value ever reported for nanoporous hybrids, and can be attributed to the nanosieve effect and the strong interaction between the nanoparticles and the carbon walls.  相似文献   

16.
The H+ concentration change was monitored near an electrode surface through an electrolysis using a slab optical waveguide technique. Indium tin oxide transparent electrode modified by porous insulating polymer to which methyl red was covalently immobilized was used as a guiding layer, and the absorbance change of the polymer film was monitored. H+ generation at the vicinity of the electrode through the oxidation of ascorbic acid could be monitored by this technique.  相似文献   

17.
《Analytical letters》2012,45(12):1907-1917
Mass transfer in electrogenerated chemiluminescence affects the sensitivity of sensors involving this technique. Herein, the characteristics of the porous Ru(bpy)32+/silica nanoparticles were investigated by transmission electron microscopy, fluorescence spectroscopy, ultraviolet-visible absorption spectroscopy, and electrogenerated chemiluminescence. The results showed that the pores inside the porous nanoparticles provided efficient mass transfer, resulting in significant enhancement of electrogenerated chemiluminescence. Consequently, a novel electrogenerated chemiluminescence sensor was developed and is reported herein. The sensitivity for tripropylamine was more than one order of magnitude higher compared to previously reported similar sensors, with a limit of detection of 3.3 × 10?12 moles per liter.  相似文献   

18.
The effect of using different solvothermal approaches, involving heat‐up and hot‐injection routes, on the phase, morphology and optical properties of tin sulfide nanoparticles using novel dibutyltin(IV) p‐methylphenyl dithiocarbamate as single source precursor compound have been studied. Dibutyltin(IV) p‐methylphenyldithiocarbamate was synthesized and characterized using various spectroscopic techniques (FT‐IR, 1H, 13C and 119Sn), and elemental analysis. TG analysis, studied under nitrogen, revealed tin sulfide of the rare mixed‐valence binary phase (Sn2S3) as the final residue at the end of the decomposition process. The samples presented as SnS1 and SnS2 obtained by the heat‐up and hot injection routes respectively, at 220 °C and in the presence of oleylamine as surfactant, revealed the α‐cubic phase of SnS with Herzenbergite structure. The X‐ray diffraction analysis of the nanoparticles also revealed patterns which showed preferred growth along (111) orientation; hence, favoring anisotropic shapes which were more distinct at higher magnification images of the TEM as a pseudo spherical morphology tending toward the formation of short rods. The optical property of the nanoparticles exhibited a blue shift in the bandgap energy with respect to the bulk, which is an evidence of quantum confinement effect.  相似文献   

19.
Fine metal particles (nanoparticles) stabilized on porous (polymeric) substrates can be considered as a model system of a high-performance catalyst. In the present study, the substrate was made using the periodic microphase-separated structure of a block copolymer as the template, and the Pd nanoparticles were formed inside the porous material by reduction of the Pd2+ ions with 1-propanol as the reductant. The three-dimensional morphology of such a polymer-Pd hybrid material was studied by transmission electron microtomography. The characteristic structural parameters of the hybrid, e.g., the penetration of the Pd nanoparticles into the polymer substrate, number density of the Pd nanoparticles, and size distribution of the Pd nanoparticles, were measured for the first time.  相似文献   

20.
Adding colloidal nanoparticles into liquid‐crystal media has become a promising pathway either to enhance or to introduce novel properties for improved device performance. Here we designed and synthesized new colloidal hybrid silica nanoparticles passivated with a mesogenic monolayer on the surface to facilitate their organo‐solubility and compatibility in a liquid‐crystal host. The resulting nanoparticles were identified by 1H NMR spectroscopy, TEM, TGA, and UV/Vis techniques, and the hybrid nanoparticles were doped into a dual‐frequency cholesteric liquid‐crystal host to appraise both their compatibility with the host and the effect of the doping concentration on their electro‐optical properties. Interestingly, the silica‐nanoparticle‐doped liquid‐crystalline nanocomposites were found to be able to dynamically self‐organize into a helical configuration and exhibit multi‐stability, that is, homeotropic (transparent), focal conic (opaque), and planar states (partially transparent), depending on the frequency applied at sustained low voltage. Significantly, a higher contrast ratio between the transparent state and scattering state was accomplished in the nanoparticle‐embedded liquid‐crystal systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号