首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 15 毫秒
1.
2.
In drug development research, the elucidation and understanding of the interactions between physiologically active substances and proteins that numerous genes produce is important. Currently, most commercially available drugs and physiologically active substances have been brought to market without knowledge of factors interacting with the drugs and the substances. Affinity purification is a useful and powerful technique employed to understand factors that are targeted by drugs and physiologically active substances. However, use of conventional matrices for affinity chromatography often causes a decrease in efficiency of affinity purification and, as a result, more practical matrices for affinity purification have been developed for application in drug discovery research. In this paper, we describe the development of high‐performance affinity beads (SG beads and FG beads) that enable one‐step affinity purification of drug targets and the elucidation of the mechanism of the action of the drugs. We also describe a chemical screening system using our affinity beads. We hope that utilization of the affinity beads will contribute to the progress of research in chemical biology. © 2009 The Japan Chemical Journal Forum and Wiley Periodicals, Inc. Chem Rec 9: 66–85; 2009: Published online in Wiley InterScience ( www.interscience.wiley.com ) DOI 10.1002/tcr.20170  相似文献   

3.
4.
5.
6.
7.
We present the Voronoi Deformation Density (VDD) method for computing atomic charges. The VDD method does not explicitly use the basis functions but calculates the amount of electronic density that flows to or from a certain atom due to bond formation by spatial integration of the deformation density over the atomic Voronoi cell. We compare our method to the well-known Mulliken, Hirshfeld, Bader, and Weinhold [Natural Population Analysis (NPA)] charges for a variety of biological, organic, and inorganic molecules. The Mulliken charges are (again) shown to be useless due to heavy basis set dependency, and the Bader charges (and often also the NPA charges) are not realistic, yielding too extreme values that suggest much ionic character even in the case of covalent bonds. The Hirshfeld and VDD charges, which prove to be numerically very similar, are to be recommended because they yield chemically meaningful charges. We stress the need to use spatial integration over an atomic domain to get rid of basis set dependency, and the need to integrate the deformation density in order to obtain a realistic picture of the charge rearrangement upon bonding. An asset of the VDD charges is the transparency of the approach owing to the simple geometric partitioning of space. The deformation density based charges prove to conform to chemical experience.  相似文献   

8.
Hydrogel formed by fluoroalkyl double-ended polyethylene glycol (Rf-PEG) micelles was studied to assess its properties to encapsulate a hydrophobic electron spin labeled drug, Chlorambucil–Tempol adduct (CT), and to control and sustain the drug release. The drug loaded hydrogel samples were characterized with variable-temperature dependent EPR experiment, and EPR theoretical lineshape analysis. It was found that CT molecules reside in the hydrophobic Rf-cores/IPDU shells of the Rf-PEG micelles and the maximum molecular-level loading capacity was estimated to be 18.8 mg per gram of the Rf-PEG. It has been known that Rf-PEG hydrogel with certain molecular masses for the fluoroalkyl group and the PEG chain shows properties of sol/gel phase coexistence and surface erosion, which represent the favorable condition for a pharmaceutical depot to control the kinetics of drug release. To evaluate the Rf-PEG’s biocompatibility and kinetics of the drug release, a cell proliferation assay was carried out on human oropharyngeal carcinoma (KB) cells. The results show that Rf-PEG is biocompatible and able to release CT to the cell media with a constant equilibrium concentration independent of the amount of CT loaded hydrogel.  相似文献   

9.
10.
Combating acquired drug resistance of EGFR tyrosine kinase (TK) is a great challenge and an urgent necessity in the management of non-small cell lung cancers. The advanced EGFR (L858R/T790M/C797S) triple mutation has been recently reported, and there have been no specific drugs approved for this strain. Therefore, our research aimed to search for effective agents that could impede the function of EGFR (L858R/T790M/C797S) TK by the integration of in silico and in vitro approaches. Our in-house quinoxalinone-containing compounds were screened through molecular docking and their biological activity was then verified by enzyme- and cell-based assay. We found that the four quinoxalinone-containing compounds including CPD4, CPD15, CPD16, and CPD21 were promising to be novel EGFR (L858R/T790M/C797S) TK inhibitors. The IC50 values measured by the enzyme-based assay were 3.04 ± 1.24 nM; 6.50 ± 3.02 nM,10.50 ± 1.10 nM; and 3.81 ± 1.80 nM, respectively, which are at a similar level to a reference drug; osimertinib (8.93 ± 3.01 nM). Besides that, they displayed cytotoxic effects on a lung cancer cell line (H1975) with IC50 values in the range of 3.47 to 79.43 μM. In this proposed study, we found that all screened compounds could interact with M793 at the hinge regions and two mutated residues including M790 and S797; which may be the main reason supporting the inhibitory activity in vitro. The structural dynamics revealed that the screened compounds have sufficient non-native contacts with surrounding amino acids and could be well-buried in the binding site’s cleft. In addition, all predicted physicochemical parameters were favorable to be drug-like based on Lipinski’s rule of five, and no extreme violation of toxicity features was found. Altogether, this study proposes a novel EGFR (L858R/T790M/C797S) TK inhibitor scaffold and provides a detailed understanding of compounds’ recognition and susceptibility at the molecular level.  相似文献   

11.
12.
A simple and sensitive stability-indicating chiral HPLC method has been developed and validated per International Conference on Harmonization guidelines for the determination of enantiomeric purity of eluxadoline (Exdl). The impact of different mobile phase compositions and chiral stationary phases on the separation of Exdl enantiomer along with process- and degradation-related impurities has been studied. Homogeneity of Exdl and stable results of Exdl enantiomer in all degraded samples reveal the fact that the proposed method was specific (stability indicating). Amylose tris(3,5-dichlorophenyl carbamate) stationary phase column Chiralpak IE-3 (150 × 4.6 mm, 3 μm) provided better resolution with polar organic solvents than cellulose derivative, crown ether, and zwitterion stationary phases and nonpolar solvents. The mobile phase consisted of acetonitrile, tetrahydrofuran, methanol, butylamine, and acetic acid in the ratio of 500:500:20:2:1.5 (v/v/v/v/v). Isocratic elution was performed at a flow rate of 1.0 mL/min, column temperature of 35°C, injection volume of 10 μL, and UV detection of 240 nm. The United States Pharmacopeia (USP) resolution of the Exdl enantiomer was found to be more than 4.0 within a 65-min run time. Exdl enantiomer detector response linearity over the concentration range of 0.859–4.524 μg/mL was found to be R2 = 0.9985. The limit of detection, limit of quantification, and average percentage recovery values were established as 0.283 μg/mL, 0.859 μg/mL, and 96.0, respectively.  相似文献   

13.
14.
15.
Masked trimethyl lock (TML) systems as molecular moieties enabling the bioresponsive release of compounds or dyes in a controlled temporal and spatial manner have been widely applied for the development of drug conjugates, prodrugs or molecular imaging tools. Herein, we report the development of a novel amino trimethyl lock (H2N-TML) system as an auto-immolative molecular entity for the release of fluorophores. We designed Cou-TML-N3 and MURh-TML-N3 , two azide-masked turn-on fluorophores. The latter was demonstrated to selectively release fluorescent MURh in the presence of physiological concentrations of the redox-signaling molecule H2S in vitro and was successfully applied to image H2S in human cells  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号