首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Fluorine is widely used as a lateral substituent to modify the physical properties of liquid crystals. Here, laterally monofluorinated compounds, 2-(4?-alkoxy-2-fluorobiphenyl-4-yl)-benzoxazole derivatives (nPPF(2)Bx) bearing different substituents (H, CH3, NO2, coded as nPPF(2)BH, nPPF(2)BM and nPPF(2)BN, respectively) at 5-position, were synthesised and characterised. It is interesting to note that these only display enantiotropic nematic mesophases with mesophase ranges of 12–28°C and 13–45°C on heating and cooling for nPPF(2)BH, 46–97°C and 62–120°C for nPPF(2)BM and 82–108°C and 87–113°C for nPPF(2)BN, which are very different from the corresponding monofluorine-substituted analogue (compounds I) with enantiotropic smectic or smectic/nematic mesophases. The enhanced nematic mesophase is attributed to the reduced π–π interaction/conjugation resulting from the twisted structure of the molecule caused by the introduction of a fluorine atom into the inter-ring of the biphenyl unit. These results suggest that modification of the monofluorine substituent position is an effective method to improve the nematic mesophase in benzoxazole-liquid crystals.  相似文献   

2.
Terminal vinyl-based benzoxazole liquid crystalline compounds, 2-(3-fluoro-4?-alkoxy-1,1?-biphenyl ?4-yl)-5-(2-propenyloxymethyl)-benzoxazole (nPPF(2)BP), were synthesised and their structures were confirmed by infrared (IR) spectra, proton nuclear magnetic resonance (1H-NMR) spectra, gas chromatography with electron impact-mass spectrometry (GC/EI-MS), matrix-assisted laser desorption/ionisation-time of flight (MALDI-TOF) mass spectrometry and elemental analysis (EA). The compounds show enantiotropic smectic/nematic phases with mesophase ranges are 71–97 °C and 87–136°C on heating and cooling processes for nPPF(2)BP, respectively. They give low melting points due to lateral fluoro substituent and flexible terminal 2-propenyloxymethyl chain. It is found that the compounds nPPF(2)BP with shorter alkoxy chain (n = 3, 4) exhibit a wide range of nematic mesophase, which is ascribed to enhanced π–π interaction caused by terminal vinyl moiety, whereas further elongation of the terminal alkoxy chain results in supressing nematic phase and increasing smectic mesophase. Compared with methyl terminated analogues, 2-propenyloxymethyl terminated compounds nPPF(2)BP display much lower melting points and wider or comparable mesophase range both in heating and cooling.  相似文献   

3.
Series of mesogenic laterally fluorinated compounds, 2-(2′,3′-difluoro-4′-alkoxybiphenyl-4-yl)-benzoxazole derivatives (nB-Fx) bearing different substituents (H, CH3, Cl, NO2, coded as nB-FH, nB-FM, nB-FC and nB-FN, respectively) at 5-position, were prepared and characterised. Their phase transition behaviour was investigated by differential scanning calorimetry and polarising optical microscopy. nB-Fx with alkoxy chain lengths of 2 to 10 carbons exhibited enantiotropic mesophases, for which the mesophase ranges were 0°C–58°C and 0°C–71°C on heating and cooling for nB-FH, 41°C–93°C and 66°C–140°C for nB-FM, 44°C–133°C and 87°C–155°C for nB-FC, and 0°C–76°C and 0°C–95°C for nB-FN, respectively. Compared to non-fluorinated analogues, with the exception of nB-FC, fluorinated nB-Fx mainly exhibited nematic mesophase both in heating and cooling, which were attributed to the disruption of the side-to-side intermolecular packing caused by the two ortho-lateral fluoro substituents. For nB-Fx series, nB-FM, nB-FC and nB-FN exhibited a much wider mesophase range than the corresponding nB-FH series, which indicated that the substituent at benzoxazole moiety was helpful in increasing the mesophase stability. With the exception of nB-FN, the nB-Fx series displayed intense photoluminescence emission at 379–383 nm in methylene chloride solution, when it was excited at its absorption maxima.  相似文献   

4.
A series of 1-methyl-1H-benzimidazole-based compounds, 2-(4?-alkoxy-1,1?-biphenyl-4-yl)-1-methyl- 1H-1,3-benzimidazole derivatives (nPPMx-M) with terminal hydrogen, methyl and nitro moieties (coded as nPPMH-M, nPPMM-M and nPPMN-M, respectively), were prepared and their structures were characterised. The compounds display enantiotropic smectic mesophases for hydrogen and methyl terminated compounds (nPPMH-M and nPPMM-M), and enantiotropic nematic mesophases for nitro terminated compounds (nPPMN-M) with short alkoxy chain below than 10 carbon atoms, where the mesophase ranges are 24–72°C and 74–104°C on heating and cooling processes for nPPMH-M, 90–119°C and 110–135°C for nPPMM-M, and 102–129°C and 113–207°C for nPPMN-M, respectively. It is noted that the compounds nPPMx-M exhibit much lower melting points and much wider mesophase range both in heating and cooling than non-1-methyl substituted analogs, which are ascribed to the disruption of hydrogen bonding among the molecules caused by methyl substitution at 1-position of benzimidazole. Meanwhile, among the compounds nPPMx-M, much wider mesophase ranges are obtained for nPPMM-M and nPPMN-M, indicating a much high mesophase stability for the compounds bearing terminal moiety (CH3 and NO2).  相似文献   

5.
Kun Hu  Yiwei Xu  Aiai Gao  Weisong Du 《Liquid crystals》2013,40(10):1455-1464
Series of fluorinated compounds, 2-(3′,5′-difluoro-4′-alkoxybiphenyl-4-yl)-benzoxazole derivatives (nFBx), were prepared and characterised. Their phase transition behaviour was investigated by differential scanning calorimetry and polarising optical microscopy. In the case of carbon atoms in the alkoxy chain between 4 and 10, they exhibited enantiotropic mesophases with the mesophase ranges of 12–119°C and 23–152°C on heating and cooling for compounds bearing different substituents (H, CH3, Cl, and NO2). With the exception of nitro-substituted compounds, the nFBx series displayed intense photoluminescence emission at 380–385 nm in methylene chloride solution when they were excited at their absorption maxima. Compared to non-fluorinated analogues, fluorinated compounds nFBx (apart from nitro-substituted compounds) exhibited much lower melting points, but comparable or slightly narrower mesophase ranges during both heating and cooling, which were attributed to the disruption of the side-to-side intermolecular packing caused by the two lateral fluoro substituents.  相似文献   

6.
A series of 2-(3?-fluoro-4?-alkoxy-1,1?-biphenyl-4-yl)-benzoxazole liquid crystals (coded as nPF(3)PBx) were prepared, where a lateral fluorine substituent, as well as methyl, chlorine and nitro terminal groups, was introduced into the molecules to investigate the effects of different polar substituents on the liquid crystal properties. The mesomorphic and photophysical properties were investigated. The results show that compounds nPF(3)PBx have enantiotropic mesophases; meanwhile, they exhibit UV–vis absorption bands with maxima at 323–326 nm and photoluminescence emission peaks at 389–395 nm, respectively. It is noted that nPF(3)PBx with terminal polar groups or electron-withdrawing groups (NO2, Cl) display higher clearing temperatures and wider mesophase range than those of the corresponding homologues with terminal non-polar groups or electron-donating groups (CH3, H). Meanwhile, compared with two lateral fluorine-substituted analogues containing 3,5-difluorophenyl unit, lateral monofluoro-substituted nPF(3)PBx display enhanced mesophase range both in heating and cooling except for terminal methyl-substituted compounds, as well as show obvious red-shifted UV–vis absorption bands and photoluminescence emission, which are attributed to the enhanced dipole–dipole interaction caused by increased dipole moment.  相似文献   

7.
Fluorinated aromatics is generally chosen as mesogenic cores to design novel liquid crystal compounds. Here, a series of benzoxazole derivatives with laterally multifluorinated biphenyl units, 2-(3′,3-difluoro ?4′-alkoxy-1,1′-biphenyl-4-yl)-benzoxazole derivatives (coded as nPF(3)PF(3)Bx), are synthesized and characterized, where methyl and nitro moieties are selected as terminal groups to investigate the effects of different polar substituents on the liquid crystal properties. The compounds nPF(3)PF(3)Bx show enantiotropic mesophases with mesophase ranges of 0–40°C and 0–63°C on heating and cooling for hydrogen-terminated derivatives (nPF(3)PF(3)BH), 43–93°C and 54–123°C for methyl-terminated ones (nPF(3)PF(3)BM), 60–108°C and 74–152°C for nitro terminated ones (nPF(3)PF(3)BN), respectively. They exhibit photoluminescence emission peaks at 390–392 nm and UV–vis absorption bands with maxima at 327–330 nm, respectively. The results reveal that lateral multifluoro substituents lead to a decrease in melting/clearing points, while electron-withdrawing terminal nitro moiety results in increases in both melting point and mesophase range.  相似文献   

8.
Modifying the position and numbers of lateral fluorine substituent is a common method to design and adjust the mesophase of liquid crystal compounds. Here, a series of 2-(2,2?-difluoro-4?-alkoxy-1,1?-biphenyl-4-yl)-5-substituted benzoxazole with both non-polar (H, CH3) and polar (NO2) groups (coded as nPF(2)PF(2)Bx) is synthesised and characterised. All of the compounds show a conspicuous inter-ring twist angle of 38° compared with corresponding reference compounds I and II which are calculated by density functional theory method, and it is interesting to note that the final compounds nPF(2)PF(2)Bx show only nematic mesophase during heating or cooling. Meanwhile, the UV-vis absorption bands and photoluminescence emission peaks both display remarkable blue-shifted. The aforementioned results reveal that lateral difluoro substituents play a key role to stable the nematic mesophase by increasing the dihedral angle of biphenyl.  相似文献   

9.
ABSTRACT

In order to study the influence of lateral Br substitution on mesophase behaviour, five homologous series of 4-substituted phenylazo phenyl 4?-(3?-bromo-4?-alkoxyphenylazo) benzoates (Ina–e) have been synthesised. Within each homologous series, the alkoxy group varies from 6 to 16 carbons, while other terminal group substituents, X, are CH3O, CH3, H, Br and NO2 groups; the mesophase behaviour of these series is compared with previously prepared laterally neat analogues, 4-substituted phenylazo phenyl 4?-(4?-alkoxyphenylazo) benzoates (IIna–e) and laterally methyl analogues, 4-substituted phenylazo phenyl 4?-(3?-methyl-4?-alkoxyphenylazo) benzoates (IIIna–e). Similar to lateral methyl analogues, the present series, lateral Br substitution showed that, independent of the polarity of the substituent X or the alkoxy-chain length, the nematic phase is predominant with relatively high stability and broad temperature ranges. The mesophase stability varies between 204.0°C and 335.0°C for the nematic phase and 169.6°C and 281.0°C for the SmA phase. Their total mesophase temperature ranges vary between 87.2°C and 201.4°C. All compounds were found to be thermally stable within the mesophase temperature range, except the lower homologue of the nitro and Br substituted derivatives. The obtained results are discussed in terms of molecular polarisability.  相似文献   

10.
Three series of 2-(4′-alkoxybiphenyl-4-yl)-1H-benzimidazole derivatives (nM-x), which possessed 5-nitrobenzimidazole (nM-N series), benzimidazole (nM-H series) or 5-methylbenzimidazole (nM-M series) units at the end of the molecule, were synthesised and characterised by infrared, 1H- and 13C-nuclear magnetic resonance spectra, electrospray ionisation-mass spectrometry and elemental analysis. Their phase transition behaviour was investigated by differential scanning calorimetry, polarising optical microscopy and X-ray diffraction. All the compounds exhibited enantiotropic smectic mesophases with wide temperature domains for a carbon number in the alkoxy chain from 6 to 16, where the mesophase ranges were 14–91°C and 17–99°C during heating and cooling processes for the nM-N compounds, 7–25°C and 8–49°C for the nM-H compounds and 48–81°C and 52–85°C for the nM-M compounds, respectively. The effect of the length of alkoxy chain on mesomorphic properties was discussed. The nM-N and nM-M exhibited a much wider mesophase range whether during heating or cooling process than the corresponding nM-H series, especially for the longer terminal chain (n > 8), which indicated that the substituent in the benzimidazole moiety was helpful in increasing the mesophase stability.  相似文献   

11.
trans-Polypentenamers with thermotropic liquid-crystalline side chains cholesteryl and cyanobiphenyl were prepared by ring-opening polymerization of vinylcyclopropane monomers with proper substituents. Molecular weights of the polymers were in the range of 25000 to 80000 and the ratios of weight- to number-average molecular weights M w/M n were between 3.3 and 3.8. The glass transition temperature values of the polymers were 35°C ( 4a ) and 39°C ( 4b ). Monomers 3a and 3b present cholesteric and smectic mesomorphism, respectively. On the other hand, polymers 4a and 4b present only a smectic mesophase.  相似文献   

12.
By modifying the molecular dipole moments with lateral monofluorine substituent, improved mesophase stabilities were obtained for novel benzoxazole derivatives, 2-(4?-alkoxy-3-fluorobiphenyl-4-yl)-benzoxazole liquid crystals (coded as nPPF(3)Bx). The series of nPPF(3)Bx with lateral monofluorine substituent ortho to benzoxazole group have larger calculated dipole moments by about 2 D than the corresponding fluorine-substituted analogs (compounds I) with lateral monofluorine ortho to alkoxy group; it is interesting to note that they show lower melting and clearing points but better mesophase stability with wider mesophase ranges for the molecules with both polar (NO2, Cl) and nonpolar (CH3, H) terminal groups. Meanwhile, compounds nPPF(3)Bx show greater red-shifted photoluminescence emissions than compounds I, which suggest that π–π interaction between molecules is reinforced by the enhanced dipole–dipole interaction caused by increased dipole moments. These results suggest that modification of the molecular dipole moment is an effective method to improve the mesophase stability of the classical mesogenic compounds.  相似文献   

13.
A new series of side-chain chiral liquid crystalline elastomers derived from M1 (cholest-5-3-ol(3β)-4-(2-propen-yloxy)]benzoate) and MC(2,5-[3,5-bis(4-(3-(4-(allyloxy)phenyl)propanoyloxy)benzoyloxy)benzoic acid]isosorbide diester). The structures of monomers and elastomers measured by using Proton Nuclear Magnetic Resonance Spectra (1H-NMR) and Fourier transform infrared spectroscopy (FTIR) separately are consistent with our design. IIP~VIP all appeared blue Grandjean (GJ) texture on the heating cycle or cooling cycle. The glass sheets of IIP~VIP were made under 150°C and measured its ultraviolet–visible spectrophotometry by PerkinElmer Lambda 950 instrument (Shelton, CT, USA). IIP~VIP all have absorptions at about 481~483 and 561~562 nm. The optical activities were measured at different temperatures on heating and cooling cycles. And the blue selective reflection of IIP~VIP on the round glass sheet can be seen. The elastomers containing less than 6 mol% of the crosslinking units displayed elasticity, reversible phase transition and high thermal stability. The glass transition temperatures reduced first and then increased, the isotropisation temperatures and the mesophase temperature ranges increased first and then decreased with increasing content of crosslinking unit. The thermogravimetric analysis (TGA) results showed that the temperatures at which 5% weight loss occurred (Td) were greater than 310°C for all the polymers.  相似文献   

14.
The thermal stability of a short carbon-fiber-reinforced PEEK composite was assessed by thermogravimetry and by a Rheometrics dynamic analyzer. The results indicated that holding for 10 min at 380°C was a suitable melting condition to avoid the thermooxidative degradation under air. After proving that the heating rate of 50°C/min can be used to evaluate the crystallinity, a heating stage was used to prepare nonisothermally crystallized specimens using cooling rates from 1 to 100°C/min after melting at 400°C for 3 or 15 min. The degree of crystallinity and the melting behavior of these specimens were investigated by DSC at a heating rate of 50°C/min. The presence of three or four regions indicated that the upper melting temperature, Tm, changed with the crystallization temperature. The first region with the highest Tm, which corresponded to the cooling rate of 1°C/min, can be associated with the crystallization in regime II. There was a second region where Tm decreased as the amount of crystals formed in regime II decreased with increasing cooling rate from 5 to 20°C/min. The third region, a plateau region, corresponded to regime III condition in which the crystals were imperfect. In the fourth region, the cooling was so fast that crystallization was incomplete during the cooling for the melting condition of 400°C for 15 min. © 1998 John Wiley & Sons, Inc. J. Polym. Sci. B Polym. Phys. 36: 2225–2235, 1998  相似文献   

15.
Semicrystalline poly(bis‐trifluoroethoxymethyl)oxetane, P(B‐3FOx), was prepared by cationic ring‐opening polymerization at ?5 °C with Mn up to 21 kDa. Differences in cooling rates from the melt have substantial effects on crystal phase, percent crystallinity, surface topography, and wetting behavior. DSC and WAXD show that cooling from the melt at slow rates (<5 °C/min) gives α‐P(B‐3FOx) with ΔHf = 22–27 J/g. Quenching from the melt results in β‐P(B‐3FOx) for which a mesophase structure is suggested. β‐P(B‐3FOx) melts at 53 °C followed by recrystallization to α‐P(B‐3FOx). Solution casting from THF results in third phase, γ‐P(B‐3FOx). TM‐AFM and SEM imaging for α‐P(B‐3FOx) showed that cold crystallization at 25 °C brought about increased crystallinity and surface topologies characterized by sharp asperities and lath‐shaped crystals. Spontaneous surface roughening of α‐P(B‐3FOx) results in a discontinuous three‐phase contact line with water and an increase in water sessile drop contact angle from 106° to 136°. The ~30° increase in water contact angle was attributed primarily to a topological change from a relatively smooth surface (Wenzel state) to an asperity‐rich surface yielding a discontinuous three‐phase contact line (composite of Wenzel and Cassie‐Baxter state). The oleophobicity for this polymer, which contains only a single ? CF3 end group on each side chain, compares favorably with more highly fluorinated acrylates. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1022–1034, 2010  相似文献   

16.
We have studied the nonisothermal and isothermal crystallization kinetics of an aromatic thermotropic liquid crystalline polyimide synthesized from 1,2,4,5-benzenetetracarboxylic dianhydride (PMDA) and 1,3-bis[4-(4′-aminophenoxy) cumyl] benzene (BACB) by means of differential scanning calorimetry (DSC). Polarized light microscopy (PLM) and wide-angle X-ray diffraction (WAXD) results confirm that this polyimide exhibits a smectic texture. Nonisothermal crystallization showed two strong and one weak exothermic peaks during cooling. The phase transition from isotropic melt to liquid crystalline state is extremely fast which completes in several seconds. The mesophase transition has a small Avrami parameter, n, of approximate 1. The isothermal crystallization of 253–258°C has been examined. The average value n is about 2.6 and the temperature-dependent rate constant k changes about two orders of magnitude in the crystallization temperature range of 6°C. The slope of ln k versus 1/(TcΔT) is calculated to be −2.4 × 105, which suggests nucleation control, via primary and/or secondary nucleation for the crystallization process. During the annealing process, a new phase (slow transition) is induced, which grows gradually with annealing time. At lower annealing temperatures (220–230°C), the slow transition process seems not to be influenced by the crystals formed during cooling process and its Avrami parameter n is ca. 0.3–0.4. However, the slow transition was hindered by the crystals formed during cooling process when annealed at higher temperature (230–240°C). © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1679–1694, 1998  相似文献   

17.
A series of main chain liquid crystalline ionomers containing sulphonate groups pendent to the polymer backbone were synthesized by an interfacial condensation reaction of 4,4′‐bis(1,10‐sebacyloxo)benzoic acid, brilliant yellow (BY), and 4,4′‐biphenyldiol. 4,4′‐Bis(1,10‐sebacyloxo)benzoic acid exhibited nematic schlieren texture during heating and cooling. The ionomers are thermotropic liquid crystalline polymers and thermally stable to about 270°C. They exhibit broad mesophase regions over a range of 220°C and the same nematic mesomogen with a colourful thread texture as B0‐LCP, which implies that the introduction of an ionic group did not change the texture of the B0‐LCP. However, the thermotropic liquid crystalline properties were somewhat weakened when the concentration of BY was more than 5%. The inherent viscosity in N,N‐dimethylformamide solution suggested that intermolecular associations of sulphonate groups occurred at low concentration, and intermolecular associations predominated at higher concentration.  相似文献   

18.
Yttrium orthoborate crystallizes in the vaterite-type structure and has two polymorphous forms, viz. a low- und a high temperature one. DTA measurements of YBO3 confirmed a reversible phase transition with a large thermal hysteresis. The phase transition has been accurately characterized by the application of different heating and cooling rates (β). Consequently, the extrapolation of the experimental data to zero β yields the transition points at 986.9°C for the heating up and at 596.5°C for the cooling down cycle. These values correspond to samples just after treatment at 1350°C. For samples with a different ‘thermal history’ other phase transition temperatures are observed, (e.g. after having performed several heating and cooling cycles). The linear relationship between the associated DTA signal ΔT=T onsetT offset and the square root of the heating rate β was confirmed, but the relation between T onset and square root of β is not found here. From the empirical data a good linear fitting between T onset and ln(β+1) can be derived. From the kinetic analysis (Kissinger method) of the phase transformation of YBO3 an apparent activation energy of about 1386 kJ mol–1 for heating and of about 568 kJ mol–1 for cooling can be determined  相似文献   

19.
Yan Li  Pei Chen  Zhongwei An  Juan Li 《Liquid crystals》2013,40(12):1549-1557
A new series of fused polyheterocyclic aromatic compounds, 7-alkoxybezopyrano[2,3-c]pyrazol-3-one (C- n BPP), were synthesised and characterised by infrared, 1H-nuclear magnetic resonance (NMR), 13C-NMR and two-dimensional 1H-13C cosy spectra. Their phase transition behaviour was investigated by differential scanning calorimetry and polarising optical microscopy. All of these compounds showed enantiotropic mesophases with temperature domains of 12–60°C and 22–69°C on heating and cooling processes for a carbon number of the alkoxy chain from 2 to 10. The effect of the length of the alkoxy chain on the mesomorphic properties was discussed. Comparison of C- n BPP and several kinds of coumarin derivatives indicated that the intermolecular hydrogen bonding acted as the driving force of the mesophase formation.  相似文献   

20.
Two polycatenar materials composed of a four‐aromatic‐ring core with a perfluorinated moiety attached in one terminal position through either butylene‐ or pentylene spacer groups, and three tetradecyloxy chains at the other end (abbreviated as 14PC4F and 14PC5F), were investigated to study the effect of pressure on the phase transition behaviour. A polarizing optical microscope equipped with a high pressure optical hot stage, was used for the purpose. The T vs. P phase diagrams of 14PC4F and 14PC5F were constructed in the pressure region up to 100 MPa. 14PC4F showed the stable crystal (Cr1)–columnar tetragonal (Coltet)–smectic A (SmA)–columnar hexagonal (Colh)–isoropic liquid (I) phase transition sequence under all pressures. 14PC5F exhibited the phase sequence metastable crystal (Cr2)–cubic (Cub)–Coltet–SmA–I in a melt‐cooled sample on heating under pressure. But when the melt‐cooled Cr2 sample was annealed at 52–54°C for 2–3 h, the stable crystal (Cr1) was formed slowly, giving a stable Cr1–Cub–Coltet–SmA–I phase sequence. The temperature region of the stable cubic phase broadened with increasing pressure. Furthermore a new mesophase of 14PC5F was pressure‐induced between the I and SmA phases on cooling at pressures above about 16 MPa. Since the monotropic mesophase exhibited a texture very similar to that of the high temperature Colh phase of 14PC4F with planar orientation, the new phase was assigned at a high temperature columnar hexagonal phase of 14PC5F.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号