首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
New magnetic molecularly imprinted polymers with two templates were fabricated for the recognition of polysaccharides (fucoidan and alginic acid) from seaweed by magnetic solid‐phase extraction, and the materials were modified by seven types of deep eutectic solvents. It was found that the deep eutectic solvents magnetic molecularly imprinted polymers showed stronger recognition and higher recoveries for fucoidan and alginic acid than magnetic molecularly imprinted polymers, and the deep eutectic solvents‐4‐magnetic molecularly imprinted polymers had the best effects. The practical recovery of the two polysaccharides (fucoidan and alginic acid) purified with deep eutectic solvents‐4‐magnetic molecular imprinted polymers in seaweed under the optimal conditions were 89.87, and 92.0%, respectively, and the actual amounts extracted were 20.6 and 18.7 μg/g, respectively. To sum up, the developed method proved to be a novel and promising method for the recognition of complex polysaccharide samples from seaweed.  相似文献   

2.
Different kinds of deep eutectic solvents based on choline chloride and ionic liquids based on 1‐methylimidazole were used to modify hybrid molecularly imprinted polymers with the monomer γ‐aminopropyltriethoxysilane‐methacrylic and three templates (rutin, scoparone, and quercetin). The materials were adopted as solid‐phase extraction packing agents, and were characterized by FTIR spectroscopy and field emission scanning electron microscopy. The hybrid molecularly imprinted polymers modified by deep eutectic solvents had high recoveries and a strong recognition of rutin, scoparone, and quercetin in Herba Artemisiae Scopariae than those modified by ionic liquids. In the procedure of solid‐phase extraction, deep eutectic solvents‐2‐hybrid molecularly imprinted polymers were obtained with the best recoveries with rutin (92.27%), scoparone (87.51%), and quercetin (80.02%), and the actual extraction yields of rutin (5.6 mg/g), scoparone (2.3 mg/g), and quercetin (3.4 mg/g). Overall, the proposed approach with the high affinity of hybrid molecularly imprinted polymers might offer a novel method for the purification of complex samples.  相似文献   

3.
《Electrophoresis》2018,39(8):1111-1118
Novel magnetic molecularly imprinted polymers (MMIPs) with multiple‐template based on silica were modified by four types of deep eutectic solvents (DESs) for the rapid simultaneous magnetic solid‐phase extraction (MSPE) of tanshinone Ⅰ, tanshinone ⅡA, and cryptotanshinone from Salvia miltiorrhiza bunge; glycitein, genistein, and daidzein from Glycine max (Linn.) Merr; and epicatechin, epigallocatechin gallate, and epicatechin gallate from green tea, respectively. The synthesized materials were characterized by Fourier transform infrared spectroscopy and field emission scanning electron microscopy. Single factor experiments were to explore the relationship between the extraction efficiency and four factors (the sample solution pH, amount of DESs for modification, amount of adsorbent, and extraction time). It was showed that the DES4‐MMIPs have better extraction ability than the MMIPs without DESs and the other three DESs‐modified MMIPs. The best extraction recoveries with DES4‐MMIP were tanshinone Ⅰ (85.57%), tanshinone ⅡA (80.58%), cryptotanshinone (92.12%), glycitein (81.65%), genistein (87.72%), daidzein (92.24%), epicatechin (86.43%), epigallocatechin gallate (80.92%), and epicatechin gallate (93.64%), respectively. The novel multiple‐template MMIPs materials modified by DES for the rapid simultaneous MSPE of active compounds were proved to reduce the experimental steps than single‐template technique, and increase the extraction efficiency.  相似文献   

4.
A novel and facile magnetic deep eutectic solvents (DES) molecularly imprinted polymers (MIPs) for the selective recognition and separation of Bovine hemoglobin (BHb) was prepared. The new-type DES was adopted as the functional monomer which would bring molecular imprinted technology to a new direction. The amounts of DES were optimized. The obtained magnetic DES-MIPs were characterized with fourier transform infrared spectrometry (FT-IR), thermogravimetric analysis (TGA), field emission scanning electron microscope (FESEM), dynamic light scattering (DLS), elemental analysis and vibrating sample magnetometer (VSM). The results suggested that the imprinted polymers were successfully formed and possessed a charming magnetism. The maximum adsorption capability (Qmax) and dissociation constant (KL) were analyzed by Langmuir isotherms (R2 = 0.9983) and the value were estimated to be 175.44 mg/g and 0.035 mg/mL for the imprinted particles. And the imprinted particles showed a high imprinting factor of 4.77. In addition, the magnetic DES-MIPs presented outstanding recognition specificity and selectivity so that it can be utilized to separate template protein from the mixture of proteins and real samples. Last but not least, the combination of deep eutectic solvents and molecular imprinted technology in this paper provides a new perspective for the recognition and separation of proteins.  相似文献   

5.
李桂珍  唐为扬  曹伟敏  王倩  朱涛 《色谱》2015,33(8):792-798
在相同的实验条件下,分别合成了以咖啡酸为模板的印迹分子聚合物和无模板分子聚合物。使用场发射扫描电镜法和吸附实验表征这两种聚合物材料的孔状结构和选择性吸附性能。然后利用印迹分子聚合物、无模板分子聚合物、C18萃取小柱这3种材料结合固相萃取法纯化山楂提取物中的咖啡酸,提取率分别为3.46、1.01、1.17 μg/g。为了优化固相萃取过程,实验研究了不同洗脱剂的影响。分别利用用氯化胆碱和甘油、氯化胆碱和尿素(摩尔比均为1:2)合成出两种低共熔溶剂。甲醇与这两种低共熔溶剂分别以不同的体积比混合作为洗脱剂,用于优化咖啡酸的固相萃取过程。实验结果表明,印迹分子聚合物是一种良好的固相萃取材料;当甲醇和甘油基低共熔溶剂在体积比为3:1混合时,表现出最好的洗脱能力,得到咖啡酸的回收率为82.32%。  相似文献   

6.
Ternary deep eutectic solvent magnetic molecularly imprinted polymers grafted on silica were developed for the selective recognition and separation of theophylline, theobromine, (+)‐catechin hydrate, and caffeic acid from green tea through dispersive magnetic solid‐phase microextraction. A new ternary deep eutectic solvent was adopted as a functional monomer. The materials obtained were characterized by FTIR spectroscopy, field emission scanning electron microscopy, transmission electron microscopy, NMR spectroscopy, and powder X‐ray diffraction. The practical recovery of the theophylline, theobromine, (+)‐catechin hydrate, and caffeic acid isolated with ternary deep eutectic solvent magnetic molecularly imprinted polymers in green tea were 91.82, 92.13, 89.96, and 90.73%, respectively, and the actual amounts extracted were 5.82, 4.32, 18.36, and 3.69 mg/g, respectively. The new method involving the novel material coupled with dispersive magnetic solid‐phase microextraction showed outstanding recognition, selectivity and excellent magnetism, providing a new perspective for the separation of bioactive compounds.  相似文献   

7.
The determination of morphine concentration in the blood and urine is necessary for patients and recruitment purposes. Herein, a magnetic molecularly imprinted polymer for selective and efficient extraction of morphine from biological samples was synthesized by using a core–shell method. Fe3O4 nanoparticles were coated with SiO2‐NH2. The molecularly imprinted polymer was coated on the Fe3O4/SiO2‐NH2 surface by the copolymerization of methacrylic acid and ethylene glycol dimethacrylate in the presence of morphine as the template molecule. The morphological and magnetic properties of the polymer were investigated. Field‐emission scanning electron microscopy indicated that the prepared magnetic polymer is almost uniform. The saturation magnetization values of Fe3O4 nanoparticles, Fe3O4/SiO2‐NH2, and the magnetic polymer were 48.41, 31.69, and 13.02 emu/g, respectively, indicating that all the particles are superparamagnetic. Kinetics of the adsorption of morphine on magnetic polymer were well described by second‐order kinetic and adsorption processes and well fitted by the Langmuir adsorption isotherm, in which the maximum adsorption capacity was calculated as 28.40 mg/g. The recoveries from plasma and urine samples were in the range of 84.9–105.5 and 94.9–102.8%, respectively. By using the magnetic molecularly imprinted polymer, morphine can selectively, reliably, and in low concentration be determined in biological samples with high‐performance liquid chromatography and UV detection.  相似文献   

8.
As a persistent organic pollutant, perfluorooctane sulfonate has drawn a great worldwide attention. In this contribution, a novel material of magnetic molecularly imprinted polymers, based on perfluorooctane sulfonate, as a template, molecule was prepared. The magnetic molecularly imprinted polymers were characterized by transmission electron microscopy, Fourier transform infrared spectroscopy, X‐ray diffraction, and vibrating sample magnetometry. The adsorption isotherm was measured, and adsorption kinetic tests were conducted. The adsorbents possess high recognition ability (2.460 mg/g) and short adsorption equilibration time (60 min). Besides, they show good specificity and good reusability with the adsorption capacities of adsorbent toward perfluorooctane sulfonate decreasing less than 3% after five adsorption–desorption cycles. The magnetic molecularly imprinted polymers were used successfully in the separation and enrichment of perfluorooctane sulfonate in real water sample and exhibited good prospects in environmental treatment and monitoring.  相似文献   

9.
Two different molecularly imprinted polymers (MIPs) were prepared by precipitation polymerization using linuron or isoproturon (phenylurea herbicides) as templates and trifluormethacrylic acid as functional monomer. These materials were used as selective sorbents in the development of molecularly imprinted solid-phase extraction (MISPE) procedures for the determination of several phenylurea herbicides (fenuron, metoxuron, chlortoluron, isoproturon, metobromuron, and linuron) in plant samples extracts. The MISPE procedures were fully optimized and applied to the clean up of selected phenylurea herbicides in carrot, potato, corn, and pea sample extracts and finally determined by HPLC-UV at 244 nm. Although a high degree of clean up was obtained, a decrease of the MIP recognition capabilities was observed in subsequent runs. Thus, a previous clean up protocol based on the use of a non-imprinted polymer was used to prevent the loss of MIP performance and to ease the removal of interferences. Following this procedure, namely two-step MISPE, matrix compounds were almost completely removed by the non-imprinted polymer retaining the ability of MIPs to selectively rebind target analytes unaltered. The developed MISPE procedures allowed the screening of phenylurea herbicides in plant samples at concentration levels required by established European maximum residue limits.  相似文献   

10.
In this work, the preparation and evaluation of water-compatible molecularly imprinted polymers for triazines using 2-hydroxyethyl methacrylate and methacrylic acid as comonomers is described. Four sets of molecularly imprinted and non-imprinted polymers for propazine were prepared at varying monomer molar ratios (from 4:0 to 1:3), and evaluated for the recognition of several triazines directly in aqueous media. The evaluation was performed by loading 1 mL of an aqueous solution containing 500 ng of each selected triazine, washing with 500 μL of acetonitrile, and eluting with 500 μL of methanol followed by 2 × 500 μL of a solution of methanol containing 10% of acetic acid. Final determinations were performed by high-performance liquid chromatography-ultraviolet detection. Improvement in molecular recognition of triazines in water was obtained on those molecularly imprinted polymers incorporating 2-hydroxyethyl methacrylate in 3:1 or 2:2 molar ratios, being the former selected as optimum providing recoveries for propazine up to 80%. A molecularly imprinted solid-phase extraction protocol was developed to ensure that triazines-selective recognition takes place inside selective binding sites in pure water media. Finally, the developed method was successfully applied to the determination of the selected triazines in environmental waters providing limits of detection from 0.16 and the 0.5 μg/L concentration range.  相似文献   

11.
Molecularly imprinted polymers (MIPs) are synthetic polymers designed to selectively extract target analytes from complex matrices (including biological matrices). The literature shows that MIPs have a degree of cross-selectivity from analytes within the same class of compounds. A commercially available MIP for tobacco-specific nitrosamines (TSNAs) is designed to be class selective for four TSNA compounds. This study sought to characterize the extent of cross-selectivity of the TSNA MIPs with other tobacco alkaloids. Cross-selectivity and recovery of the SupelMIP™ TSNA SPE cartridges was assessed with N-nitrosonornicotine (NNN), nicotine, cotinine and morphine. Their recoveries were compared with the recoveries of a nonimprinted polymer SPE cartridge, and two traditional SPE cartridges: a Waters mixed-mode cation exchange cartridge and a Waters hydrophilic–lipophilic balance cartridge. NNN and cotinine had the highest recoveries with the MIP cartridge, over 80%, and cotinine samples in urine had >80% recoveries. Nicotine had highly variable recoveries, possibly owing to differing chemical properties from the TSNAs. All three analytes had significantly different recoveries with the MIP cartridges compared with the traditional SPE cartridges. Morphine displayed nonspecific interactions with the MIP cartridges. Utilization of the TSNAs’ cross-selectivity allows for simultaneous extraction and identification of multiple tobacco biomarkers using one extraction technique.  相似文献   

12.
Deep eutectic solvents were used in both dispersive liquid–liquid microextraction and solid‐phase extraction for the purification of chloromycetin and thiamphenicol from milk. In the dispersive liquid–liquid microextraction procedure, deep eutectic solvents mixed with chloroform at different ratios (0:1–5:1, v/v) were used as the extraction agent to optimize the procedure, and the ratio of 2:1 v/v was found to be the best extraction agent with 87.23 and 83.17% recoveries of chloromycetin and thiamphenicol, respectively. Furthermore, deep eutectic solvents were also used to modify molecular imprinted polymers in solid‐phase extraction procedure, and the polymers were used to purify chloromycetin and thiamphenicol from milk. Fourier transform infrared spectroscopy, and nuclear magnetic resonance spectroscopy were used to characterize the polymers. The solid‐phase extraction recoveries with deep eutectic solvents with molecularly imprinted polymers (chloromycetin and thiamphenicol, two templates), molecularly imprinted polymers (without deep eutectic solvents), and nonimprinted polymers (without a template) for chloromycetin were 91.23, 82.64, and 57.3%, respectively, and recoveries for thiamphenicol were 87.02, 79.03, and 52.27%, respectively. The recoveries of chloromycetin and thiamphenicol from milk in the solid‐phase extraction procedure were higher than using deep eutectic solvents mixed with chloroform as the extraction agent in the dispersive liquid–liquid microextraction procedure.  相似文献   

13.
A novel and highly efficient approach to obtain magnetic molecularly imprinted polymers is described to detect avermectin in fish samples. The magnetic molecularly imprinted polymers were synthesized by surface imprinting polymerization using magnetic multiwalled carbon nanotubes as the support materials, atom transfer radical polymerization as the polymerization method, avermectin as template, acrylamide as functional monomer, and ethylene glycol dimethacrylate as crosslinker. The characteristics of the magnetic molecularly imprinted polymers were assessed by using transmission electron microscopy, Fourier transform infrared spectroscopy, X‐ray photoelectron spectroscopy, vibrating sample magnetometry, X‐ray diffraction, and thermogravimetric analysis. The binding characteristics of magnetic molecularly imprinted polymers were researched through isothermal adsorption experiment, kinetics adsorption experiment, and the selectivity experiment. Coupled with ultra high performance liquid chromatography and tandem mass spectrometry, the extraction conditions of the magnetic molecularly imprinted polymers as adsorbents for avermectin were investigated in detail. The recovery of avermectin was 84.2–97.0%, and the limit of detection was 0.075 μg/kg. Relative standard deviations of intra‐ and inter‐day precisions were in the range of 1.7–2.9% and 3.4–5.6%, respectively. The results demonstrated that the extraction method not only has high selectivity and accuracy, but also is convenient for the determination of avermectin in fish samples.  相似文献   

14.
A novel magnetic dummy molecularly imprinted polymer based on multiwalled carbon nanotubes was prepared with 2-amino-4-chlorophenol as the dummy template for rapid separation and enrichment of 4-chlorophenol in aqueous samples. The magnetic dummy molecularly imprinted polymer was characterized by infrared spectroscopy, transmission electron microscopy, scanning electron microscopy, and vibrating sample magnetometry. The saturation adsorption capacity of the magnetic dummy molecularly imprinted polymer toward 4-chlorophenol was up to 54.3?mg?g?1 at 298?K, which is higher than for previously reported imprinted polymers. The magnetic dummy molecularly imprinted polymers were coupled with high-performance liquid chromatography to isolate and determine 4-chlorophenol in fish bile and river water with the recoveries from 95.8 to 98.9% and 96.6 to 99.1%, respectively.  相似文献   

15.
Dexamethasone‐imprinted polymers were fabricated by reversible addition–fragmentation chain transfer polymerization on the surface of magnetic nanoparticles under mild polymerization conditions, which exhibited a narrow polydispersity and high selectivity for dexamethasone extraction. The dexamethasone‐imprinted polymers were characterized by scanning electron microscopy, transmission electron microscope, Fourier transform infrared spectroscopy, X‐ray diffraction, energy dispersive spectrometry, and vibrating sample magnetometry. The adsorption performance was evaluated by static adsorption, kinetic adsorption and selectivity tests. The results confirmed the successful construction of an imprinted polymer layer on the surface of the magnetic nanoparticles, which benefits the characteristics of high adsorption capacity, fast mass transfer, specific molecular recognition, and simple magnetic separation. Combined with high‐performance liquid chromatography, molecularly imprinted polymers as magnetic extraction sorbents were used for the rapid and selective extraction and determination of dexamethasone in skincare cosmetic samples, with the accuracies of the spiked samples ranging from 93.8 to 97.6%. The relative standard deviations were less than 2.7%. The limit of detection and limit of quantification were 0.05 and 0.20 μg/mL, respectively. The developed method was simple, fast and highly selective and could be a promising method for dexamethasone monitoring in cosmetic products.  相似文献   

16.
In this work, novel selective recognition materials, namely magnetic molecularly imprinted polymers (MMIPs), were prepared. The recognition materials were used as pretreatment materials for magnetic molecularly imprinted solid-phase extraction (MSPE) to achieve the efficient adsorption, selective recognition, and rapid magnetic separation of methotrexate (MTX) in the patients’ plasma. This method was combined with high-performance liquid chromatography–ultraviolet detection (HPLC–UV) to achieve accurate and rapid detection of the plasma MTX concentration, providing a new method for the clinical detection and monitoring of the MTX concentration. The MMIPs for the selective adsorption of MTX were prepared by the sol–gel method. The materials were characterized by transmission electron microscopy, Fourier transform-infrared spectrometry, X-ray diffractometry, and X-ray photoelectron spectrometry. The MTX adsorption properties of the MMIPs were evaluated using static, dynamic, and selective adsorption experiments. On this basis, the extraction conditions were optimized systematically. The adsorption capacity of MMIPs for MTX was 39.56 mgg−1, the imprinting factor was 9.40, and the adsorption equilibrium time was 60 min. The optimal extraction conditions were as follows: the amount of MMIP was 100 mg, the loading time was 120 min, the leachate was 8:2 (v/v) water–methanol, the eluent was 4:1 (v/v) methanol–acetic acid, and the elution time was 60 min. MTX was linear in the range of 0.00005–0.25 mg mL−1, and the detection limit was 12.51 ng mL−1. The accuracy of the MSPE–HPLC–UV method for MTX detection was excellent, and the result was consistent with that of a drug concentration analyzer.  相似文献   

17.
In this work, dummy molecularly imprinted polymers with high selectivity and affinity to capsaicin and dihydrocapsaicin are designed using N‐vanillylnonanamide as a dummy template. The performance of dummy molecularly imprinted polymers and nonimprinted polymers was evaluated using adsorption isotherms, adsorption kinetics, and selective recognition capacity. Dummy molecularly imprinted polymers were found to exhibit good site accessibility, taking just 20 min to achieve adsorption equilibrium; they were also highly selective toward capsaicin and dihydrocapsaicin. We successfully used dummy molecularly imprinted polymers as a specific sorbent for selectively enriching capsaicin and dihydrocapsaicin from chili pepper samples. In a scaled‐up experiment, the selective recovery of capsaicinoids was calculated to be 77.8% using solid‐phase extraction. To the best of our knowledge, this is the first example of the use of N‐vanillylnonanamide as a dummy template in molecularly imprinted polymers to simultaneously enrich capsaicin and dihydrocapsaicin.  相似文献   

18.
Organophosphorus insecticides are widely employed in agriculture, and residues of them can remain after harvesting or storage. Pesticide residue control is an important task for ensuring food safety. Common chromatographic methods used in the determination of pesticide residues in food require clean-up and concentration steps prior to quantitation. While solid-phase extraction has been widely employed for this purpose, there is a need to improve selectivity. Due to their inherent biomimetic recognition systems, molecularly imprinted polymers (MIP) allow selectivity to be enhanced while keeping the costs of analysis low. In this work, a MIP that was designed to enable the selective extraction of fenitrothion (FNT) from tomatoes was synthesized using a noncovalent imprinting approach. The polymer was prepared using methacrylic acid as functional monomer and ethyleneglycol dimethacrylate as crosslinking monomer in dichloromethane (a porogenic solvent). The polymer was characterized by Fourier transform infrared spectroscopy, solid-state nuclear magnetic resonance (NMR), scanning electron microscopy (SEM), and nitrogen sorption porosimetry. The pore structure and the surface area were evaluated using the BET adsorption method. To characterize the batch rebinding behavior of the MIP, the adsorption isotherm was measured, allowing the total number of binding sites, the average binding affinity and the heterogeneity index to be established. A voltammetric method of quantifying FNT during the molecularly imprinted solid-phase extraction (MISPE) studies was developed. The polymer was placed in extraction cartridges which were then used to clean up and concentrate FNT in tomato samples prior to high-performance liquid chromatographic quantitation. The material presented a medium extraction efficiency of 59% (for analyses performed with three different cartridges on three days and a fortification level of 5.0 μg g−1) and selectivity when used in the preparation of tomato samples, and presented the advantage that the polymer could be reused several times after regeneration. Figure    相似文献   

19.
The highly selective, fast and effective sample pretreatment technique molecularly imprinted solid-phase extraction (MISPE) can overcome the low sensitivity of the highly efficient capillary electrophoresis-UV method (CE-UV). In this work, narrowly dispersible bisphenol A (BPA)-imprinted polymeric microspheres with a high capacity factor of k′ = 6.8 and an imprinted factor of I = 6.53 were investigated as selective solid-phase extraction (SPE) sorbents for use in extraction of BPA from different sample matrices (tap water, wastewater, Yangtze River water, soil from the Yangtze River, shrimp and human urine). Washing and eluting protocols of MISPE were optimized. Under optimal conditions, recoveries of MISPE were investigated. Recoveries were basically constant and the relative standard deviation (RSD) was lower than 5.8% when loading volumes changed from 1 to 50 mL. Recoveries ranged from 71.20% to 86.23% for different sample matrices. Compared with C18 SPE, MISPE had higher selectivity and recovery for BPA. BPA was determined with good accuracy and precision in different complex samples using CE-UV coupled with MISPE. Spiked recoveries ranged from 95.20% to 105.40%, and the RSD was less than 7.2%. Because a large loading volume was achieved, the enrichment efficiency of pretreatment and the sensitivity of this method were improved. The limits of detection of this MISPE-CE-UV method for BPA in tap water, wastewater, Yangtze River water, soil from the Yangtze River, shrimp and human urine were 3.0 μg L− 1, 5.4 μg L− 1, 6.9 μg L− 1, 2.1 μg L− 1, 1.8 μg L− 1 and 84 μg L− 1, respectively.  相似文献   

20.
An analysis method is reported for dibutyl phthalate and related compounds with high selectivity and sensitivity by using the selective molecularly imprinted solid-phase extraction (MISPE) technique. In this report, dibutyl phthalate (DBP) is employed as the template molecule, and the molecularly imprinted polymers (MIPs) are synthesized through the bulk polymerization of methacrylic acid (MAA). The Scatchard plot suggests that the template-polymer system has two-site binding behavior with the dissociation constants of 0.5187 and 0.01898 mmol L−1, respectively. The rebinding test, based on the MISPE column technique, shows the recoveries of soybean milk samples spiked with 5 phthalates are in the range of 75.8-107.5% with the relative standard deviations of 1.80-10.08%, indicating the feasibility of the prepared MIPs for phthalates extraction. Finally, the method is used to analyze the trace level of phthalates in commercial soybean milk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号