首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this article, hydrogen bonding interaction between p-cresol (p-CR) and cyclic ether, tetrahydrofuran (THF) and thioether, tetrahydrothiophene (THT) has been investigated. Two-color resonantly enhanced two-photon ionization in conjunction with the fluorescence detected IR (FDIR) spectroscopy was used to record the changes in the OH stretching frequency in these complexes. The FDIR spectra showed existence of a single conformer of the p-CR·THF and two conformers of the p-CR·THT complex. With the help of computed IR spectra and atoms-in-molecules analysis, the two conformers of p-CR·THT were assigned as the complex of p-CR with THT (C(2))/THT (C(S)). The redshift of OH stretching frequency for the p-CR·THF complex was greater compared to those for the conformers of the p-CR·THT complex. The binding energies of the p-CR·THF and p-CR·THT complexes were computed to be 7.42 and 6.15 kcal/mole. These were of the same order as those for the acyclic analogs, diethylether (DEE), and diethylsulfide (DES), of the solvent molecules under investigation. Although the DEE and THF consist of same number of carbon atoms, the dispersion energy contribution was much higher (43%) for DEE than that for THF (30%). In the case of sulfur analogs, however, it was similar (~50%) in the case of both DES well as THT complexes. All the computed H-bond indicators for these two complexes nicely correlate with the observed redshift of the O-H stretch.  相似文献   

2.
Investigation of characteristics of hydrogen bonding between pyridine and water by MP2/aug-cc-pvdz method reveals that these two molecules may form three types of hydrogen bonds depending on nature of proton withdrawal site of pyridine. Change of orientation of water with respect to plane of aromatic ring leads to transformation of the O–H···N bond to O–H···π bond via wide region of the potential energy surface where both lone pair of the nitrogen atom and π-system make significant contribution into hydrogen bonding. Hydrogen bond in this intermediate region may be considered as mixed O–H···N/O–H···π bond representing new type of H bonds.  相似文献   

3.
Theoretical calculations are performed to study the nature of the hydrogen bonds in complexes HCHO···HNO, HCOOH···HNO, HCHO···NH3, HCOOH···NH3, HCHO···NH2F and HCOOH···NH2F. The geomet- ric structures and vibrational frequencies of these six complexes at the MP2/6-31 G(d,p), MP2/6-311 G(d,p), B3LYP/6-31 G(d,p) and B3LYP/6-311 G(d,p) levels are calculated by standard and counterpoise-corrected methods, respectively. The results indicate that in complexes HCHO···HNO and HCOOH···HNO the N—H bond is strongly contracted and N—H···O blue-shifted hydrogen bonds are observed. While in complexes HCHO···NH3, HCOOH···NH3, HCHO···NH2F and HCOOH···NH2F, the N—H bond is elongated and N—H···O red-shifted hydrogen bonds are found. From the natural bond orbital analysis it can be seen that the X—H bond length in the X—H···Y hydrogen bond is controlled by a balance of four main factors in the opposite directions: hyperconjugation, electron density redistribu- tion, rehybridization and structural reorganization. Among them hyperconjugation has the effect of elongating the X—H bond, and the other three factors belong to the bond shortening effects. In complexes HCHO···HNO and HCOOH···HNO, the shortening effects dominate which lead to the blue shift of the N—H stretching frequencies. In complexes HCHO···NH3, HCOOH···NH3, HCHO···NH2F and HCOOH···NH2F where elongating effects are dominant, the N—H···O hydrogen bonds are red-shifted.  相似文献   

4.
The diastereotopy of the methylene protons at positions 2 and 6 in 1,4-dihydropiridine derivatives with various substituents has been investigated. NMR spectroscopy and quantum chemistry calculations show that the CH···O intramolecular hydrogen bond is one of the factors amplifying the chemical shift differences in the 1H-NMR spectra.  相似文献   

5.
Two Schiff base metal complexes [Cu–SPETN·NO3 (1) and Ni–SPETN·NO3 (2) [SPETN?=?2,2′-[propane,1,3-diylbis(nitrilomethyldyne)pyridyl,phenolate]] with hydrogen bonding groups have been synthesized and characterized by single-crystal X-ray diffraction. In both of the compounds nitrates occupy a crystallographic general position. In 1 the lattice nitrates are on the 21 screw axis while in 2 they are at the crystallographic inversion center. C–H···Onitrate synthons (formed by the nitrate anions and peripheral hydrogen bonding groups of the metal complexes) are non-covalent building blocks in molecular-assembly and packing of the cationic Schiff base metal complexes (M?=?Ni2+, Cu2+), resulting in 2-D hydrogen bonded networks. The Cu···Cu non-bonding contact in 1 is 3.268?Å while the Ni–Ni bonding distance in 2 is 3.437?Å.  相似文献   

6.
A new version of the ab initio gradient embedded genetic algorithm (GEGA) program for finding the global minima on the potential energy surface (PES) of mixed clusters formed by molecules and atoms is reported. The performance of the algorithm is demonstrated on the neutral H·(H(2)O)(n) (n = 1-4) clusters, that is, a radical H atom solvated in 1-4 water molecules. These clusters are of a fundamental interest. The solvated hydrogen atom forms during photochemical events in water, or during scavenging of solvated electrons by acids, and transiently exists in biological systems and possibly in inclusion complexes in the deep ocean and in the ice shield of earth. The processes associated with its existence are intriguingly complex, however, and have been the subject of decades-long debates. Using GEGA, we explicate the apparently extreme structural diversity in the H·(H(2)O)(n) (n = 1-4) clusters. All considered clusters have four basic structural types: type I, where the H radical is weakly coordinated to the oxygen atom of one of the water molecules; type II, where H is weakly coordinated to a H atom of one of the water molecules; type III, consisting of H(2), the OH radical, and n - 1 H(2)O molecules; and type IV, consisting of H(3)O and n - 1 H(2)O. There are myriads of isomers of all four types. The lowest energy species of types I and II are the isoenergetic global minima. H·(H(2)O)(n) clusters appear to be a challenging case for GEGA because they have many shallow minima close in energy some of which are significantly less stable than the global minimum. Additionally, the global minima themselves have high structural degeneracy, they are only weakly bound, and they are prone to dissociation. GEGA performed exceptionally well in finding both the global and the low-energy local minima that were subsequently confirmed at higher levels of theory.  相似文献   

7.
Structural and electronic properties of C-H···O contacts in compounds containing a formyl group are investigated from the perspective of both hydrogen bonding and dipole-dipole interactions, in a systematic and graded approach. The effects of α-substitution and self-association on the nature of the formyl H-atom are studied with the NBO and AIM methodologies. The relative dipole-dipole contributions in formyl C-H···O interactions are obtained for aldehyde dimers. The stabilities and energies of aldehyde clusters (dimer through octamer) have been examined computationally. Such studies have an implication in crystallization mechanisms. Experimental X-ray crystal structures of formaldehyde, acrolein and N-methylformamide have been determined in order to ascertain the role of C-H···O interactions in the crystal packing of formyl compounds.  相似文献   

8.
调节硫酸氧钒与盐酸羟胺溶液至pH~4制得的题目晶体属空间群P2_1/n,晶胞参数a=8.201,b=8.597,c=9.947A,β=93.00°,Z=4.结构解出精修后R因子为0.069.结果表明,不对称单位中二个羟胺根以侧接态与VO~(3+)配位,另一羟胺取端接态以O占据V的第五赤道配位位置,配位水处于氧钒基强键反位,Cl~-则在配阳离子界外以平衡电荷,晶体对的化学式确证为[(VO~(3+))(NH_2O~_)_2(NH_3O)(H_2O)][Cl~-]  相似文献   

9.
Substituted isobenzofuranone derivatives 1a-3a and bindone 4 are characterized by the presence of an intramolecular C(Ar)-H···O hydrogen bond in the crystal (X-ray), solution ((1)H NMR and specific and nonspecific IEF-PCM solvation model combined with MP2 and B3LYP methods), and gas (MP2 and B3LYP) phases. According to geometric and AIM criteria, the C(Ar)-H···O interaction weakens in 1a-3a (independent of substituent nature) and in 4 with the change in media in the following order: gas phase > CHCl(3) solution > DMSO solution > crystal. The maximum value of hydrogen bond energy is 4.6 kcal/mol for 1a-3a and 5.6 kcal/mol for 4. Both in crystals and in solutions, hydrogen bond strength increases in the order 1a < 2a < 3a with the rising electronegativity of the ring substituents (H < OMe < Cl). The best method for calculating (1)H NMR chemical shifts (δ(calcd) - δ(expl) < 0.7 ppm) of hydrogen bonded and nonbonded protons in 1a-3a and 1b-3b (isomers without hydrogen bonds) is the GIAO method at the B3LYP level with the 6-31G** and 6-311G** basis sets. For the C-H moiety involved in the hydrogen bond, the increase of the spin-spin coupling constant (1)J((13)C-(1)H) by about 7.5 Hz is in good agreement with calculations for C-H bond shortening and for blue shifts of C-H stretching vibrations (by 55-75 cm(-1)).  相似文献   

10.
The 1H NMR data and the results of DFT quantum-chemical calculations indicate stereocontrolled formation of intermolecular C-H···O hydrogen bonds in aqueous solutions of L-(2S,3S)-2-(imidazol-1-yl)-3-methylpentan-1-ol.  相似文献   

11.
A novel triple helical structure that is self-assembled by cationic molecules, 1-acetamido-3-(2-pyrazinyl)-imidazolium, is reported. The computational analysis underpins that the formation of the triple helix is driven by C-H···O hydrogen bonding.  相似文献   

12.
Two amide [2]rotaxanes were synthesized in high yields using a novel N,N'-dipropargyl diketopiperazine axle centerpiece as the template to which the stoppers are attached through "click chemistry". (1)H and 2D NMR spectra provide evidence for two different H-bonding motifs, in one of which the triazole CH groups form C-H···O═C bonds with the wheel carbonyl O atoms. This motif can be controlled and switched reversibly by competitive anion binding.  相似文献   

13.
We investigated geometry, energy, ${\nu_{{\text{N--H}}}}$ harmonic frequencies, 14N nuclear quadrupole coupling tensors, and ${n_{\rm O}\to \sigma _{{\text{N--H}}}^\ast}$ charge transfer properties of (acetamide) n clusters, with n = 1 ? 7, by means of second-order Møller-Plesset perturbation theory (MP2) and DFT method. Dependency of dimer stabilization energies and equilibrium geometries on various levels of theory was examined. B3LYP/6-311++G** calculations revealed that for acetamide clusters, the average hydrogen-bonding energy per monomer increases from ?26.85 kJ mol?1 in dimer to ?35.12 kJ mol?1 in heptamer; i.e., 31% cooperativity enhancement. The n-dependent trend of ${\nu_{{\text{N--H}}}\,{and}\,^{14}}$ N nuclear quadrupole coupling values were reasonably correlated with cooperative effects in ${r_{{\text{N--H}}}}$ bond distance. It was also found that intermolecular ${n_{\rm O}\to \sigma_{{\text{N--H}}}^\ast}$ charge transfer plays a key role in cooperative changes of geometry, binding energy, ${\nu_{{\text{N--H}}}}$ harmonic frequencies, and 14N electric field gradient tensors of acetamide clusters. There is a good linear correlation between 14N quadrupole coupling constants, C Q (14N), and the strength of Fock matrix elements (F ij ). Regarding the ${n_{\rm O}\to \sigma_{{\text{N--H}}}^\ast}$ interaction, the capability of the acetamide clusters for electron localization, at the N–H· · ·O bond critical point, depends on the cluster size and thereby leads to cooperative changes in the N–H· · ·O length and strength, N–H stretching frequencies, and 14N quadrupole coupling tensors.  相似文献   

14.
The change of cooperativity of FH···Cl hydrogen bonds upon sequential addition of up to six FH molecules to the Cl first coordination sphere is investigated. The geometry of clusters [(FH) nCl] (n = 1…6) was calculated (CCSD/aug-cc-pVDZ) and compared with [(FH) nF] clusters. The geometry is determined by the symmetry-driven electrostatic requirements and also by the fact that formation of each new FH···Cl bond creates a depression in the chlorine's electron cloud on the opposite side of Cl (σ-hole), which limits the range of directions available for subsequent H-bond formation. The mutual influence of FH···Cl hydrogen bonds is anticooperative—the addition of each FH molecule weakens H-bonds by 23–16% and decreases their covalent character (as seen by LMO-EDA decomposition and QTAIM analysis). Anticooperativity effects could be tracked by spectroscopic parameters (frequency of local HF mode νFH, chemical shift δH, spin–spin coupling constants 1JFH, 1hJHCl, 2hJFCl and nuclear quadrupolar constants χ18F, χD, and χ35Cl. © 2019 Wiley Periodicals, Inc.  相似文献   

15.
16.
17.
We measured the molecular beam Fourier transform microwave spectra of six isotopologues of the 1?:?1 adduct of CH(3)CHClF with water. Water prefers to form an O-H···F rather than an O-H···Cl hydrogen bond. This is just the contrary of what was observed in the chlorofluoromethane-water adduct, where an O-H···Cl link was formed (W. Caminati, S. Melandri, A. Maris and P. Ottaviani, Angew. Chem., Int. Ed., 2006, 45, 2438). The water molecule is linked with an O-H···F bridge to the fluorine atom, with r(F···H(w)) = 2.14 ?, and with two C-H···O contacts to the alkyl hydrogens with r(C(1)-H(1)···O(w)) = 2.75 ? and r(C(2)-H(2)···O(w)) = 2.84 ?, respectively. Besides the rotational constants, the quadrupole coupling constants of the chlorine atom have been determined. In addition, information on the internal dynamics has been obtained.  相似文献   

18.
An intimate interplay of O-H···O/C-H···F hydrogen bonds and π-π stacking interactions allows a phenyleneethynylene-based dendritic molecule to fold and self-assemble into two distinctively different molecular crystals as pseudopolymorphs.  相似文献   

19.
The molecular and crystal structure of the title complex (I) obtained by addition of tin fluoride in a hydrofluoric acid solution to 18-crown-6 in methanol was investigated by X-ray structure analysis. The crystals are monoclinic, space group P21/n, a = 13.497(3), b = 7.806(2), c = 9.892(2) Å, β = 95.57(3)°, Z = 2 for C12H32F4O10Sn. In the polymer chain, the crown ether molecules alternate with the inorganic complexes [trans-SnF4(H2O)2] and are linked to them by O-H...O type hydrogen bonds involving the intermediate water molecules. The weak C-H...F interactions bind the chains into the layers which are parallel to the xz plane.  相似文献   

20.
Making use of the invariant property of the equilibrium size distribution of the hydrogen bonding clus- ters formed in hydrogen bonding system of AaDd type,the analytical expressions of the free energy in pregel and postgel regimes are obtained.Then the gel free energy and the scaling behavior of the number of hydrogen bonds in gel phase near the critical point are investigated to give the corre- sponding scaling exponents and scaling law.Meanwhile,some properties of intermolecular and in- tramolecular hydrogen bonds in the system,sol and gel phases are discussed.As a result,the explicit relationship between the number of intramolecular hydrogen bonds and hydrogen bonding degree is obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号