首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Persistence and dissipation of fluopicolide and propamocarb were studied on cabbage and soil as per good agricultural practices over a period of 2 years. A modified QuEChERS analytical method in conjunction with gas chromatography (GC) and GC–mass spectrometry was used for analysis of fluopicolide and its metabolite, 2,6-dichlorobenzamide, and propamocarb in cabbage and soil. The results of the method validation were satisfactory with recoveries within 74.5–100.81% and relative standard deviations 4.8–13.9% (n = 6). The limit of detection (LOD) and limit of quantification (LOQ) of both fluopicolide and 2,6-dichlorobenzamide were 0.003 µg mL?1 and 0.01 mg kg?1, respectively. The LOD and LOQ of propamocarb were 0.03 µg mL?1 and 0.1 mg kg?1, respectively. During 2013, the initial residue deposits of fluopicolide on cabbage were 0.60 and 1.48 mg kg?1 from treatments at the standard and double doses of 100 and 200 g a.i. ha?1 which dissipated with the half-life of 3.4 and 3.7 days. During 2014, the residues were 0.49 and 1.13 mg kg?1 which dissipated with the half-life of 4.2 and 5.1 days. Propamocarb residues on cabbage were 5.36 and 12.58 mg kg?1 in the first study (2013) and 4.85 and 10.26 mg kg?1 in the second study (2014) from treatments at the standard and double doses of 1000 and 2000 g a.i. ha?1, respectively. The residues dissipated with the half-life of 4–5.5 days. The preharvest interval, the time required for fluopicolide + propamocarb residues to dissipate below the maximum residue limits (notified by EU) at the standard dose, was 11.8 and 14 days during 2013 and 2014. Residue of 2,6-dichlorobenzamide was always <LOQ in cabbage. Residues of fluopicolide, 2,6-dichlorobenzamide and propamocarb were <LOQ in field soil at harvest.  相似文献   

2.
The fate of kresoxim-methyl was studied in a tobacco field ecosystem, and a simple and reliable method was developed for the determination of kresoxim-methyl in soil, green and cured tobacco leaves. Kresoxim-methyl residues were extracted from samples with petroleum ether, and determined by gas chromatography (GC) coupled with an electron capture detector (ECD). Kresoxim-methyl (30% suspension concentration) was applied at 150 g a.i. ha–1 (the recommended high dosage) and 225 g a.i. ha–1 (1.5 times the recommended high dosage) in the experimental fields in Huishui and Changsha in China. The limits of detection (LODs) and limits of quantification (LOQs) of kresoxim-methyl in green tobacco leaves, cured tobacco leaves and soil were 0.012 and 0.04 mg kg–1, 0.12 and 0.4 mg kg–1, and 0.0015 and 0.005 mg kg–1, respectively. The average recoveries were 84.5% to 95.7%, 79.8% to 94.3% and 83.3% to 93.8% with relative standard deviations (RSDs) less than 10% in green tobacco leaves at four spiked levels (0.04, 0.2, 2 and 8 mg kg–1), cured tobacco leaves at three spiked levels (0.4, 1 and 10 mg kg–1) and soil at three spiked levels (0.005, 0.05 and 0.5 mg kg–1), respectively. The results showed that the half-lives of kresoxim-methyl in green tobacco leaves and soil were 1.2–5.3 days and 6.7–10.4 days, respectively. At harvest, kresoxim-methyl residues in cured tobacco leaves samples collected 21 days after the last application at the recommended dosage were below 1.0 mg kg–1. These results could help establish appropriate application frequency and harvest intervals in the use of kresoxim-methyl on tobacco plants.  相似文献   

3.
A rapid and simple method for the determination of propionylbrassinolide residues in tomatoes, apples and grapes using GC–MS is reported. Samples were extracted with acetonitrile, and the extracts were analyzed without any further clean-up. The results showed good linearity (r 2 > 0.99) with standard solutions over the concentration range of 0.5–50 mg L?1. The LODs and LOQs of propionylbrassinolide were 0.15 and 0.5 mg kg?1 in all samples. Recoveries were in the range of 81.9–111.2%, with corresponding RSDs of 4.6–12.9% for three fortified levels. Intra- and inter-day RSDs were in the ranges of 1.5–14.2% and 5.3–15.6%. It was demonstrated that the proposed method is simple and efficient, and particularly suitable for detecting propionylbrassinolide residues in fruit and vegetables.  相似文献   

4.
QuEChERS and solid phase extraction (SPE) methods were applied for determining four herbicides (metazachlor, oxyfluorfen, quizalofop-p-ethyl, quinmerac) and one insecticide (α(±)-cypermethrin) in runoff water, soil, sunflower and oilseed rape plant matrices. Determination was performed using gas chromatography mass spectrometry (GC-MS), whereas high-pressure liquid chromatography mass spectrometry (HPLC-MS) was used for quinmerac. In all substrates linearity was evaluated using matrix-matched calibration samples at five concentration levels (50–1000 ng L?1 for water, 5–500 μg kg?1 for soil and 2.5–500 μg kg?1 for sunflower or oilseed rape plant). Correlation coefficient was higher than 0.992 for all pesticides in all substrates. Acceptable mean recovery values were obtained for all pesticides in water (65.4–108.8%), soil (70.0–110.0%) and plant (66.1–118.6%), with intra- and inter-day RSD% below 20%. LODs were in the range of 0.250–26.6 ng L?1 for water, 0.10–1.8 μg kg?1 for soil and 0.15–2.0 μg kg?1 for plants. The methods can be efficiently applied for field dissipation studies of the pesticides in energy crop cultivations.  相似文献   

5.
Liu  Xin-Gang  Dong  Feng-Shou  Hu  Hao  Zheng  Yong-Quan 《Chromatographia》2009,69(11):1453-1456

A rapid and simple method for the determination of propionylbrassinolide residues in tomatoes, apples and grapes using GC–MS is reported. Samples were extracted with acetonitrile, and the extracts were analyzed without any further clean-up. The results showed good linearity (r 2 > 0.99) with standard solutions over the concentration range of 0.5–50 mg L−1. The LODs and LOQs of propionylbrassinolide were 0.15 and 0.5 mg kg−1 in all samples. Recoveries were in the range of 81.9–111.2%, with corresponding RSDs of 4.6–12.9% for three fortified levels. Intra- and inter-day RSDs were in the ranges of 1.5–14.2% and 5.3–15.6%. It was demonstrated that the proposed method is simple and efficient, and particularly suitable for detecting propionylbrassinolide residues in fruit and vegetables.

  相似文献   

6.
An analytical method was developed to detect the residue of mebendazole and its metabolites (hydroxymebendazole and aminomebendazole) in the muscle of grass carp and shrimp by LC–UV detection. Mebendazole and its metabolites were extracted with water and ethyl acetate, defatted with hexane, and purified with MCX solid phase extraction column. The intra- and inter-batch precision (measured by CV%) was <9.0%. The accuracy (measured by relative error, %) was <12%. The LODs were 2.5 μg kg?1 for mebendazole and hydroxymebendazole, 5 μg kg?1 for aminomebendazole; the LOQs were 5 μg kg?1 for mebendazole and hydroxymebendazole, 10 μg kg?1 for aminomebendazole. The mean recoveries of mebendazole and its metabolites from grass carp and shrimp muscle at a concentration range of 5.0–500.0 μg kg?1 were 90.7–97.0% with relative standard deviations below 10%.  相似文献   

7.
A modified QuEChERs method with liquid chromatography-tandem mass spectrometry for analysis of guadipyr residue and dissipation in rice matrices, paddy soil and paddy water was developed and validated. Mean recoveries and relative standard deviations in paddy soil, paddy water, rice plant, rice straw, rice hull and husked rice matrices at three spiking levels were 83.1–116.5% and 1.6–9.5%, respectively. The half-life of guadipyr was determined in 2 years at three different field sites in China via a dissipation experiment. The half-lives of guadipyr in paddy water were 0.22–0.37 days, 0.24–3.33 days in paddy soil and 0.44–1.90 days in rice plant. The terminal residues of guadipyr ranged from ND (concentrations of guadipyr were below limit of detection) to 50 μg kg?1 in paddy soil, 10–470 μg kg?1 in rice hull, ND70 μg kg?1 in husked rice and ND to 110 μg kg?1 in rice straw. The results would be helpful in fixing maximum residue limit of guadipyr, a new insecticide, in rice.  相似文献   

8.

A rapid and simple analytical method for the determination of ten chlorinated priority substances (hexachloro-1,3-butadiene, pentachlorobenzene, hexachlorobenzene, hexachlorocyclohexane isomers, heptachlor, and heptachlor epoxides) in fish samples using QuEChERS extraction, dual dispersive solid-phase extraction (dSPE) clean-up, and GC analysis was developed. For the extraction, two published extraction/partitioning procedures were evaluated, and the recoveries obtained for the analytes (in range 54–98 % with RSDs ≤15 %) were in favour of the conventional QuEChERS method. The use of the dual dSPE clean-up yields cleaner extracts than in the case of single dSPE, which enables the use of ECD for the detection of the analytes and simplifies the maintenance of the GC system. The method was optimised using homogenates of chub fish that is frequently sampled for monitoring purposes. The linearity of the method was evaluated using matrix-matched calibration curves (in the range 2–50 μg kg−1), and correlation coefficients (r 2) in the range 0.9927–0.9992 and RSDs of the relative response factors (RRF) below the value of 20 % were achieved. LODs ranged from 0.5 to 1.1 μg kg−1, while LOQs ranged from 1.5 to 3.5 μg kg−1. The accuracy of the method was verified by the analysis of the NIST standard reference material SRM 1946 (Lake Superior Fish Tissue), and most of the analytes of interest presented good agreement with the certified values.

  相似文献   

9.
This work reports a method for extraction and analysis of thiosultap sodium, thiocyclam, and nereistoxin in pepper. Different extraction methods were tested to attain the best recoveries. The final extraction method combines acetonitrile extraction in an acidic medium with ultrasonic extraction followed by a cleanup step with anhydrous MgSO4. The analyses were performed on a Linear Ion Trap Quadrupole LC-MS/MS in negative mode for thiosultap sodium and in positive mode for thiocyclam and nereistoxin. Recovery studies carried out on peppers spiked at different fortification levels (20 and 200 μg?kg?1) yielded average recoveries in the range 58–87% with RSD (%) values below 20%. Calibration curves covering two orders of magnitude were performed and they were linear over the concentration range studied (0.001–0.5 mg?l?1). Instrumental detection limits were in the low μg?kg?1 range. Stability studies of thiosultap sodium in water were performed by evaluating a 100-μg?l?1 solution of this compound in water. It was analyzed over 7 days, after which more than 80% degradation of thiosultap sodium could be observed.  相似文献   

10.
Dissipation and residue levels of bifenthrin and chlorfenapyr in eggplant and soil under field conditions were investigated using gas chromatography coupled with an electron capture detector (GC-ECD). The mean recoveries of bifenthrin and chlorfenapyr were 85.2–104.9%, with relative standard deviations (RSDs) of 0.5–9.1%. The limit of quantification (LOQ) was 0.01 mg kg?1. Bifenthrin exhibited half-lives of 3.3 to 4.1 days in eggplant and 17.8 to 25.7 days in soil; the half-lives of chlorfenapyr were 3.5 to 3.8 days in eggplant and 21.7 to 27.7 days in soil. During harvest, the terminal residues of bifenthrin and chlorfenapyr were below 0.031 and 0.083 mg kg?1, respectively. Risk assessment for different groups of people in China was evaluated. The risk quotients (RQs) of bifenthrin and chlorfenapyr were ranged from 0.0068 to 0.0148 and from 0.0033 to 0.0072, respectively. These results may provide guidance on reasonable use of pesticides and serve as a basis for establishing maximum residue limits (MRLs) in China.  相似文献   

11.
In this study, an effective analytical method for simultaneous determination of thiamethoxam and its metabolite clothianidin in goji berry and soil was developed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The recoveries of the compounds in goji berry and soil at the levels of 0.005, 0.02, and 0.1 μg kg?1 were 84.7–98.9% and the relative standard deviations (RSDs) were 0.9–3.2%. The limits of detection (LOD) for both compounds in goji berry and soil matrices were 0.001 mg kg?1; the limits of quantification (LOQ) were 0.005 mg kg?1 for both compounds in two matrices. The dissipation and final residual experiments in 2016 with the commercial formulation of dinotefuran ? thiamethoxam 30% suspension concentrate (SC) was conducted in goji berries in northwest China (Qinghai, Gansu, Inner Mongolia, and Ningxia). Thiamethoxam was dissipated fast in goji plant ecosystem with half-lives were 1.08–1.01 and 2.04–4.25 days in goji berry and soil. The final residues of thiamethoxam were <0.005–0.382 and <0.005–1.120 mg kg?1 in goji berry and soil, respectively.  相似文献   

12.
A high-performance liquid chromatography with ultraviolet (HPLC-UV) detection method after derivatisation was developed for the first time for the novel fungicide zinc thiazole residue in tobacco samples. Field trials in two different locations were conducted to investigate the dissipation and residue of zinc thiazole in tobacco leaves and soil. The average recoveries of zinc thiazole were in the range of 82.5%–93.9% with relative standard deviations (RSDs) of 1.2%–9.1%. The zinc thiazole showed a rapid dissipation rate in fresh tobacco leaves with the half-lives of 1.1–1.6 days. The terminal residues of zinc thiazole in cured tobacco leaves and soil were 2.8–28.0 mg kg?1and <0.05 mg kg?1, respectively. The results could be used to establish the maximum residue limits (MRLs) and provide guidance for the scientific use of zinc thiazole in agriculture.  相似文献   

13.
Residue analysis of fosthiazate in cucumber and soil by QuEChERS and GC-MS   总被引:2,自引:0,他引:2  
Min Wu  Jiye Hu 《Chemical Papers》2014,68(10):1368-1374
A convenient method was developed for the determination and validation of fosthiazate in cucumber and soil. The procedure is based on liquid partitioning with acetonitrile followed by dispersive solid phase extraction as the clean-up step, after which samples were analysed by gas chromatography-mass spectrometry (GC-MS). The average recoveries ranged from 91.2 % to 99.0 % with relative standard deviations (RSDs) of less than 6.05 %, at three fortification levels (0.02 mg kg?1, 0.1 mg kg?1, 0.5 mg kg?1) in cucumber and soil, and the limits of quantification (LOQs) for fosthiazate were all established at 0.02 mg kg?1. The proposed method was applied successfully to analyses of the dissipation and residue of fosthiazate in field trials. The dissipation rate of fosthiazate was described using pseudo-first-order kinetics with a half-life of 4.33 days and 4.08 days in soil in Beijing and Shandong, respectively. In the terminal residue experiment, fosthiazate residues in cucumber and soil were clearly below the maximum residue level (MRL, 0.2 mg kg?1) set in China.  相似文献   

14.
《Analytical letters》2012,45(4):345-355
In this article, a new and relatively simple liquid chromatography-mass spectrometry (LC-MS) method was developed for the simultaneous determination of five flavonoid compounds. Under optimized conditions, the LC-MS analysis can be achieved on a reverse-phase C18 column (50 × 2.1 mm, 1.8 µm), with a binary mobile phase consisting of 0.1% formic acid in water and methanol under gradient elution conditions. The relative standard deviations (RSDs) of the retention times and peak areas for all analytes were in the range of 0.1–0.5% and 3.2–5.2%, respectively. The LODs and LOQs were in the range of 2.1–7.0 ng mL?1 and 6.9–23 ng mL?1, respectively. Furthermore, the developed LC-MS method was successfully applied to analyze flavonoids in different parts of two medicinal Zingiberaceae plants (i.e., Costus speciosus and Etlingera elatior) from different sources. The proposed LC-MS method was simple, effective, and reliable, and thus it has potential to be used for the quality control of other medicinal herbs.  相似文献   

15.
Xiong  Lin  Huang  Lele  Shimo  Shimo Peter  Li  Weihong  Yang  Xiaolin  Yan  Ping 《Chromatographia》2016,79(19):1373-1380

A high-performance liquid chromatography (HPLC) screening method with a photodiode array detector (PDAD) was established for the simultaneous determination of residues of 13 benzimidazoles (BZDs) and metabolites in sheep and cattle muscle and liver. Samples were extracted by ultrasonication in ethyl acetate and purified over DVB-NVP-SO3Na sorbent. Under the optimized conditions, good linearities were obtained for BZDs and metabolites with correlation coefficients (R 2) greater than 0.9911. The recoveries of the 13 BZDs and metabolites from spiked samples were 72.0–119.3 %, with intraday and interday relative standard deviations (RSDs) below 22.8 %. The limits of detection (LODs) and quantitation (LOQs) were 0.8–4.9 and 2.6–18.2 μg kg−1, respectively. The results clearly demonstrated that the developed approach enables reliable screening of 12 BZDs and metabolites except flubendazole (FLU) and could be used as a regulatory tool for the screening of BZD and metabolite residues in the muscle and liver of sheep and cattle.

  相似文献   

16.
An efficient and fast microwave-assisted extraction (MAE) method followed by gas chromatographic separation with mass spectrometric detection (GC–MS) was developed for the extraction of 18 organochlorine pesticides (OCPs) from sediment. Parameters affecting the MAE procedure such as the type and volume of the extraction solvent, irradiation power, temperature and irradiation time were successfully optimised. Under the optimal conditions, extraction efficiencies in the range of 73.4–119% were obtained with THF–HEX (9:1, v/v) for all OCPs studied. The method was linear over the range of 2.9–5000 ng g?1 with determination coefficients (r2) higher than 0.992 for all analytes. The limits of detection, LODs (S/N = 3), obtained varied from 1.0 to 2.2 ng g?1 and limits of quantification, LOQs (S/N = 10) were between 2.9 and 6.8 ng g?1. The proposed method was successfully applied to the analysis of real sediment samples and acceptable recoveries from 70.1 to 124% with RSDs ≤14.8% were obtained. 10 OCPs were determined below their LOQ and 8 OCPs in the range of 124–2830 ng g?1. The MAE method was compared with Soxhlet, shake flask and ultrasonic solvent extraction techniques. Thus, the MAE–GC–MS method could efficiently be used for selective extraction and quantification of the target analytes from the complex sediment matrices.  相似文献   

17.

Zeolite NaY modified with cetyltrimethylammonium bromide (CTAB) was considered for extraction/preconcentration of carbamate pesticides using an on-line SPE-HPLC system. The simultaneous determination of carbamate pesticides, including aldicarb, carbofuran, carbaryl, isoprocarb, methiocarb and promecarb, was performed by HPLC–UV using a LichroCART RP-18 column with gradient elution of methanol and 0.1 % acetic acid. The sorbent presented admicelles of CTAB on its surfaces and exhibited a sorption capacity of 180–18,600 mg kg−1 sorbent, which could be re-modified for at least five extraction cycles. The quantitative retention of target pesticides on the admicellar sorbent involved hydrophobic and π-cation interaction, while pesticides were eluted from the admicellar SPE column using only 750 μL of methanol. LODs and LOQs of the proposed method were 0.005–140 and 0.02–600 μg L−1, respectively. The analytes were effectively concentrated with the enrichment factors between 5 and 551. The developed on-line admicellar SPE-HPLC system was successfully applied to the determination of carbamate pesticides in ten environmental water samples from different sources. Recoveries of spiked samples at a concentration of 0.1–5 mg L−1 ranged from 77 to 111 %.

  相似文献   

18.
A simple on-line method for simultaneous determination of some oestrogens including oestriol (E3), norethisterone (NORE), ethynylestradiol (EE2), D-norgestrel (NORG) and bisphenol A (BPA), in environmental liquid samples was developed by coupling in-tube solid phase microextraction (in-tube SPME) to high-performance liquid chromatography with diode array (DAD) and fluorescence (FLD) detectors. Two capillary chromatographic columns (Supel-Q? and Carboxen? 1006 porous layer open tubular) were selected to develop this method. To achieve optimum extraction performance, several parameters were investigated including number of draw/eject cycles and the sample volume for each of the columns. Reproducibility was satisfactory for inter- and intra-day precision, yielding % RSDs of less than 10% and 7.6%, respectively. Limits of detection (LODs) and quantification (LOQs) for the proposed method using a DAD detector were achieved in the ranges of 0.04–0.63?ng?mL?1 and 0.12–1.9?ng?mL?1, depending of the capillary column used. Fluorescence detection improved these parameters for E3, BPA and EE2, obtaining LODs of 0.005–0.03?ng?mL?1 and LOQs of 0.015–0.08?ng?mL?1 using Supel-Q and LODs of 0.01–0.015?ng?mL?1 and LOQs of 0.025–0.04?ng?mL?1 using Carboxen. The proposed method was successfully applied to spiked environmental waters obtaining recoveries greater than 80%.  相似文献   

19.
Two independent field trials were performed in Guizhou and Hunan, China in 2013 to investigate the dissipation and residue levels of saisentong in tobacco and soil. A novel and accurate method using high-performance liquid chromatography with diode array detection was developed and validated to determine saisentong levels in tobacco and soil. The average recovery of saisentong at fortification levels of 0.5, 2.5, 5.0 and 50.0 mg kg?1 in fresh tobacco ranged from 75.92 to 107.40% with a relative standard deviation (RSD) of 0.94 to 7.55%, that at fortification levels of 0.5, 2.0 and 5.0 mg kg?1 in tobacco powder ranged from 74.96 to 94.43% with a relative standard deviation (RSD) of 4.38 to 8.14%, and that at fortification levels of 0.1, 0.5 and 5.0 mg kg?1 in soil ranged from 86.90 to 100.0% with an RSD of 1.38 to 4.62%. The limit of detection (LOD) of saisentong was 0.15 mg?kg?1 in tobacco and 0.03 mg kg?1 in soil, and the limit of quantification (LOQ) was 0.5 mg kg?1 in tobacco and 0.1 mg kg?1 in soil, respectively. For field experiments, the half-lives of saisentong in tobacco from Guizhou and Hunan were 5.9 and 1.6 days, respectively; those in soil were 14.7 and 12.0 days, respectively. The results suggest that the saisentong dissipation curves followed the first-order kinetic. The terminal residues of saisengtong in tobacco ranged from 0.5 to 9.39 mg kg?1 at pre-harvest intervals (PHI) of 7, 14 and 21 days.  相似文献   

20.
A modified quick, easy, cheap, effective, rugged and safe (QuEChERS) method for the analysis of triallate residue in wheat and soil was developed and validated. Multi-walled carbon nanotubes were used as clean-up sorbent. The residual levels and dissipation rates of triallate in wheat and soil were determined by liquid chromatography–tandem mass spectrometry. The limit of quantification was established as 0.01, 0.02 and 0.05 mg kg?1 for soil, wheat and wheat plant samples, respectively. The average recoveries of triallate ranged from 77% to 108% at fortified levels of 0.01–0.5 mg kg?1 with relative standard deviations of 3.0–8.4% (n = 5). From residue trials at three geographical experimental plots in China, the results showed that the half-lives of triallate in soils were 1.13–1.63 days. For trials applied according to the label recommendation, the final residues of triallate in wheat at harvest time were all below 0.05 mg kg?1 (the maximum residue levels of China, Japan, Korea and the US).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号