首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Chemical physics》2001,263(2-3):301-316
Macroscopic first- and third-order susceptibilities of ice Ih, ice II, ice IX and ice VIII are calculated using static and frequency-dependent electronic and static vibrational molecular (hyper)polarizabilities at the MP2 level. The molecular properties are in good agreement with experiment and with high-level ab initio calculations. Intermolecular electrostatic and polarization effects due to induced dipoles are taken into account using a rigorous local-field theory. The electric field due to permanent dipoles is used to calculate effective in-crystal (hyper)polarizabilities. The polarizability depends only weakly on the permanent field, but the dipole moment and the hyperpolarizabilities are strongly affected. The calculated linear susceptibility is in good agreement with available experimental data for ice Ih, and the third-order susceptibility for a third harmonic generation experiment is in reasonable agreement with experimental values for liquid water. The molecular vibrational contributions have a small effect on the susceptibilities. The electric properties of a water tetramer are calculated and used to estimate the effect of non-dipolar interactions on the susceptibilities of ice Ih, which are found to be small.  相似文献   

2.
In this work we report results for dynamical (hyper)polarizabilities of the sulphur dioxide molecule with inclusion of vibrational corrections. The electronic contributions were computed analytically at the single and double coupled cluster level through response theories for the frequencies 0, 0.0239, 0.0428, 0.0656, 0.0720, and 0.0886 hartree. Contributions of the connected triple excitations to the dynamic electronic properties were also estimated through the multiplicative correction scheme. Vibrational corrections were calculated by means of the perturbation theoretical method. The results obtained show that the zero point vibrational correction is very small for all properties studied while the pure vibrational correction is relevant for the dc-Pockels effect, intensity dependent refractive index, and dc-Kerr effect. For these nonlinear optical processes, the pure vibrational corrections represent approximately 75%, 13%, and 6% of the corresponding electronic contributions for the higher frequencies quoted. The results presented for the polarizability are in good agreement with experimental values available in the literature. For the hyperpolarizabilities we have not obtained experimental results with precision sufficient for comparison.  相似文献   

3.
A global theoretical study of the (hyper)polarizabilities of alkali doped Si(10) is presented and discussed. First, a detailed picture about the low lying isomers of Si(10)Li, Si(10)Na, Si(10)K, Si(10)Li(2), Si(10)Na(2), and Si(10)K(2) has been obtained in a global manner. Then, the microscopic first (hyper)polarizabilities of the most stable configurations have been determined by means of ab initio methods of high predictive capability such as those based on the M?ller-Plesset perturbation and coupled cluster theory, paying extra attention to the (hyper)polarizabilities of the open shell mono-doped systems Si(10)Li, Si(10)Na, Si(10)K, and the influence of spin contamination. These results were used to assess the performance of methods of low computational cost based on density functional theory (DFT) in the reliable computation of these properties in order to proceed with an in-depth study of their evolution as a function of the alkali metal, the cluster composition, and the cluster structure. The most interesting outcomes of the performed (hyper)polarizability study indicate that while alkali doping leaves the per atom polarizability practically unaffected, influences dramatically the hyperpolarizabilities of Si(10). The lowest energy structures of the mono-doped clusters are characterized by significantly enhanced hyperpolarizabilities as compared to the analogue neutral or charged bare silicon clusters Si(10) and Si(11), while, certain patterns governed by the type and the number of the doping agents are followed. The observed hyperpolarizability increase is found to be in close connection with specific cluster to alkali metal charge transfer excited states and to the cluster structures. Moreover, an interesting correlation between the anisotropy of the electron density, and the hyperpolarizabilities of these systems has been observed. Finally, it is important to note that the presented method assessment points out that among the various DFT functionals used in this work, (B3LYP, B3PW91, BhandHLYP, PBE0, CAM-B3LYP, LC-BLYP, LC-BPW91) only B3PW91 and PBE0 out of the seven provided a consistent quantitative performance for both polarizabilities and hyperpolarizabilities with respect to the ab initio methods utilized here. On the other hand, the long range corrected functionals LC-(U)BLYP and LC-(U)BPW91 (μ = 0.47) failed to supply quantitatively accurate hyperpolarizability results in all the studied clusters while the CAM-(U)B3LYP functional performs satisfactory only in the case of the Na and K doped systems.  相似文献   

4.
5.
A set of exchange‐correlation functionals, including BLYP, PBE0, B3LYP, BHandHLYP, CAM‐B3LYP, LC‐BLYP, and HSE, has been used to determine static and dynamic nonresonant (nuclear relaxation) vibrational (hyper)polarizabilities for a series of all‐trans polymethineimine (PMI) oligomers containing up to eight monomer units. These functionals are assessed against reference values obtained using the Møller–Plesset second‐order perturbation theory (MP2) and CCSD methods. For the smallest oligomer, CCSD(T) calculations confirm the choice of MP2 and CCSD as appropriate for assessing the density functionals. By and large, CAM‐B3LYP is the most successful, because it is best for the nuclear relaxation contribution to the static linear polarizability, intensity‐dependent refractive index second hyperpolarizability, static second hyperpolarizability, and is close to the best for the electro‐optical Pockels effect first hyperpolarizability. However, none of the functionals perform satisfactorily for all the vibrational (hyper)polarizabilities studied. In fact, in the case of electric field‐induced second harmonic generation all of them, as well as the Hartree–Fock approximation, yield the wrong sign. We have also found that the Pople 6–31+G(d) basis set is unreliable for computing nuclear relaxation (hyper)polarizabilities of PMI oligomers due to the spurious prediction of a nonplanar equilibrium geometry. © 2013 Wiley Periodicals, Inc.  相似文献   

6.
In this work we present a method based on the perturbation theoretic approach of Bishop and co-workers [J. Chem. Phys. 95, 2646 (1991); 97, 5255 (1992); 108, 10013 (1998)] to calculate the effect of torsional motion on the polarizability and hyperpolarizabilities of hydrogen peroxide. The frequency dependence has been evaluated using the time-dependent Hartree-Fock method. The results obtained show that the zero-point vibrational averaging contributions are small compared to the corresponding electronic contributions. In the static limit the pure vibrational contributions are very large, specially for beta and gamma. These contributions are significant for the hyperpolarizabilities even in the visible region, except for the second harmonic generation and third harmonic generation processes.  相似文献   

7.
We monitor the influence of the bond length alternation (BLA) modification on the static electronic polarizability and first hyperpolarizability of two polymethineimine oligomers. Four theoretical approaches are compared: HF, PBE0, LC-omegaPBE, and MP2. For the dodecamer, both HF and PBE0 are unable to foresee even the qualitative evolution of the first hyperpolarizability when varying the BLA. On the contrary, LC-omegaPBE provides (non)linear optics properties in agreement with MP2 results, especially for the longer chains. This confirms the interest of range-separated hybrids for the computation of the (hyper)polarizabilities of extended pi-conjugated compounds.  相似文献   

8.
The vibrational contribution to static and dynamic (hyper)polarizability tensors of polyacetylene are theoretically investigated. Calculations were carried out by the finite field nuclear relaxation (FF-NR) method for periodic systems, newly implemented in the CRYSTAL code, using the coupled perturbed Hartree-Fock scheme for the required electronic properties. The effect of the basis set is also explored, being particularly important for the non-periodic direction perpendicular to the polymer plane. Components requiring a finite (static) field in the longitudinal direction for evaluation by the FF-NR method were not evaluated. The extension to that case is currently being pursued. Whereas the effect on polarizabilities is relatively small, in most cases the vibrational hyperpolarizability tensor component is comparable to, or larger than the corresponding static electronic contribution.  相似文献   

9.
A series of trinuclear metal clusters MS4(M'PPh3)2(M'PPh3) (M = Mo, W; M' = Cu, Ag, Au) have been studied using the density functional theory (DFT) method. The static polarizabilities and hyperpolarizabilities of the model clusters have been calculated using the finite-field (F-F) method. The model clusters, divided into two groups, are alike in the structure of two fragments of rhombic units M-(mu-S)2-M' (M = Mo, W; M' = Cu, Ag, Au), perpendicular to each other, which are joined by sharing the bridge metal M. It is the charge transfer from one of these moieties to the other in these characteristic sulfido-transitional metal cores that is responsible for the polarizabilities and hyperpolarizabilities. This kind of electronic delocalization, different from that of the planar pi-system, is interesting and warrants further investigation. The structural effects on properties are important. In these models, considerable third-order nonlinearities are exhibited. The element substitution effect of Mo and W is weak, while that of Cu and Ag is relatively substantial. An overall order is gamma xxxx(Mo-Ag) > gamma xxxx(W-Ag) > gamma xxxx(Mo-Au) > gamma xxxx(W-Au) > gamma xxxx (Mo-Cu) > gamma xxxx(W-Cu) and gamma av(Mo-Ag) approximately gamma av(W-Ag) > gamma av(Mo-Au) approximately gamma av(W-Au) approximately gamma av (Mo-Cu) approximately gamma av(W-Cu).  相似文献   

10.
Electronic and vibrational nuclear relaxation (NR) contributions to the dipole (hyper)polarizabilities of the endohedral fullerene Li@C(60) and its monovalent cation [Li@C(60)](+) are calculated at the (U)B3LYP level. Many results are new, while others differ significantly from those reported previously using more approximate methods. The properties are compared with those of the corresponding hypothetical noninteracting systems with a valence electron transferred from Li to the cage. Whereas the NR contribution to the static linear polarizabilities is small in comparison with the corresponding electronic property, the opposite is true for the static hyperpolarizabilities. A relatively small, but non-negligible, NR contribution to the dc-Pockels effect is obtained in the infinite frequency approximation.  相似文献   

11.
We report a conventional ab initio and density functional theory study of the polarizability (alpha(alphabeta)/e(2)a(0) (2)E(h) (-1)) and hyperpolarizability (gamma(alphabetagammadelta)/e(4)a(0) (4)E(h) (-3)) of the sodium dimer. A large [18s14p9d2f1g] basis set is thought to yield near-Hartree-Fock values for both properties: alpha=272.28, Deltaalpha=127.22 and gamma=2157.6 x 10(3) at R(e)=3.078 87 A. Electron correlation has a remarkable effect on the Cartesian components of gamma(alphabetagammadelta). Our best value for the mean is gamma=1460.1 x 10(3). The (hyper)polarizability shows very strong bond-length dependence. The effect is drastically different for the longitudinal and transverse components of the hyperpolarizability. The following first derivatives were extracted from high-level coupled cluster calculations: (dalpha/dR)(e)=54.1, (dDeltaalpha/dR)(e)=88.1e(2)a(0)E(h) (-1), and (dgamma/dR)(e)=210 x 10(3)e(4)a(0) (3)E(h) (-3). We associate the (hyper)polarizability to bonding effects between the two sodium atoms by introducing the differential property per atom Q(diff)/2 identical with (Q[Na(2)(X (1)Sigma(g) (+))]/2-Q[Na((2)S)]). The differential (hyper)polarizability per atom is predicted to be strongly negative for the dimer at R(e), as [alpha(Na(2))/2-alpha(Na)]=-33.8 and [gamma(Na(2))/2-gamma(Na)]=-226.3 x 10(3). The properties calculated with the widely used B3LYP and B3PW91 density functional methods differ significantly. The B3PW91 results are in reasonable agreement with the conventional ab initio values. Last, we observe that low-level ab initio and density functional theory methods underestimate the dipole polarizability anisotropy. Experimental data on this important property are highly desirable.  相似文献   

12.
Accurate static dipole polarizabilities and hyperpolarizabilities are calculated for the ground states of the Al, Si, P, S, Cl, and Ar atoms. The finite-field computations use energies obtained with various ab initio methods including Moller-Plesset perturbation theory and the coupled cluster approach. Excellent agreement with experiment is found for argon. The experimental alpha for Al is likely to be in error. Only limited comparisons are possible for the other atoms because hyperpolarizabilities have not been reported previously for most of these atoms. Our recommended values of the mean dipole polarizability (in the order Al-Ar) are alpha/e(2)a(0) (2)E(h) (-1)=57.74, 37.17, 24.93, 19.37, 14.57, and 11.085 with an error estimate of +/-0.5%. The recommended values of the mean second dipole hyperpolarizability (in the order Al-Ar) are gamma/e(4)a(0) (4)E(h) (-3)=2.02 x 10(5), 4.31 x 10(4), 1.14 x 10(4), 6.51 x 10(3), 2.73 x 10(3), and 1.18 x 10(3) with an error estimate of +/-2%. Our recommended polarizability anisotropy values are Deltaalpha/e(2)a(0) (2)E(h) (-1)=-25.60, 8.41, -3.63, and 1.71 for Al, Si, S, and Cl respectively, with an error estimate of +/-1%. The recommended hyperpolarizability anisotropies are Deltagamma/e(4)a(0) (4)E(h) (-3)=-3.88 x 10(5), 4.16 x 10(4), -7.00 x 10(3), and 1.65 x 10(3) for Al, Si, S, and Cl, respectively, with an error estimate of +/-4%.  相似文献   

13.
We report electric multipole moments and (hyper)polarizabilities for the haloethynes HCCX, X = F, Cl, Br, and I. The molecular properties have been obtained from finite-field self-consistent field, M?ller-Plesset perturbation theory and coupled cluster calculations with large, carefully optimized basis sets of gaussian-type functions. The mean dipole (hyper)polarizability and the mean quadrupole polarizability near the Hartree-Fock limit are alpha/e(2)a(0) (2)E(h) (-1) = 23.74 (HCCF), 37.26 (HCCCl), 43.97 (HCCBr), 56.44 (HCCI), beta/e(3)a(0) (3)E(h) (-2) = -73.9 (HCCF), -67.0 (HCCCl), -39.5 (HCCBr), 42.7 (HCCI), gamma/e(4)a(0) (4)E(h) (-3) = 4,914 (HCCF), 6,554 (HCCCl), 9,328 (HCCBr), 14,949 (HCCI), and C/e(2)a(0) (4)E(h) (-1) = 160.3 (HCCF), 317.1 (HCCCl), 471.2 (HCCBr), 671.2 (HCCI). Electron correlation has a small effect on the dipole polarizability but affects strongly the hyperpolarizability. Agreement with the available experimental data is more or less fair for HCCF, HCCCl, and HCCBr but less satisfactory for HCCI.  相似文献   

14.
The vibrational (hyper)polarizabilities of some selected Xe derivatives are studied in the context of Bishop–Kirtman perturbation theory (BKPT) and numerical finite field methodology. It was found that for this set of rare gas compounds, the static vibrational properties are quite large, in comparison to the corresponding electronic ones, especially those of the second hyperpolarizability. This also holds for the dc‐Pockels β(?ω;ω,0), Kerr γ(?ω;ω,0,0) and electric field second harmonic generation γ (?2ω;ω,ω,0) effects, although the computed nuclear relaxation (nr) vibrational contributions are smaller in magnitude than the static ones. HXeOXeH was used to study the effects of electron correlation, basis set, and geometry. Geometry effects were found to lead to noticeable changes of the vibrational and electronic second hyperpolarizability. A limited study of the effect of Xe insertion to the nr vibrational properties is also reported. Assessment of the results revealed that Xe insertion has a remarkable effect on the nr (hyper)polarizabilities. In terms of the BKPT, this is associated with a remarkable increase of the electrical and mechanical anharmonicity terms. The latter is consistent with the anharmonic character of several vibrational modes reported for rare gas compounds. © 2013 Wiley Periodicals, Inc.  相似文献   

15.
The basis set and electron correlation effects on the static polarizability (alpha) and second hyperpolarizability (gamma) are investigated ab initio for two model open-shell pi-conjugated systems, the C(5)H(7) radical and the C(6)H(8) radical cation in their doublet state. Basis set investigations evidence that the linear and nonlinear responses of the radical cation necessitate the use of a less extended basis set than its neutral analog. Indeed, double-zeta-type basis sets supplemented by a set of d polarization functions but no diffuse functions already provide accurate (hyper)polarizabilities for C(6)H(8) whereas diffuse functions are compulsory for C(5)H(7), in particular, p diffuse functions. In addition to the 6-31G(*)+pd basis set, basis sets resulting from removing not necessary diffuse functions from the augmented correlation consistent polarized valence double zeta basis set have been shown to provide (hyper)polarizability values of similar quality as more extended basis sets such as augmented correlation consistent polarized valence triple zeta and doubly augmented correlation consistent polarized valence double zeta. Using the selected atomic basis sets, the (hyper)polarizabilities of these two model compounds are calculated at different levels of approximation in order to assess the impact of including electron correlation. As a function of the method of calculation antiparallel and parallel variations have been demonstrated for alpha and gamma of the two model compounds, respectively. For the polarizability, the unrestricted Hartree-Fock and unrestricted second-order M?ller-Plesset methods bracket the reference value obtained at the unrestricted coupled cluster singles and doubles with a perturbative inclusion of the triples level whereas the projected unrestricted second-order M?ller-Plesset results are in much closer agreement with the unrestricted coupled cluster singles and doubles with a perturbative inclusion of the triples values than the projected unrestricted Hartree-Fock results. Moreover, the differences between the restricted open-shell Hartree-Fock and restricted open-shell second-order M?ller-Plesset methods are small. In what concerns the second hyperpolarizability, the unrestricted Hartree-Fock and unrestricted second-order M?ller-Plesset values remain of similar quality while using spin-projected schemes fails for the charged system but performs nicely for the neutral one. The restricted open-shell schemes, and especially the restricted open-shell second-order M?ller-Plesset method, provide for both compounds gamma values close to the results obtained at the unrestricted coupled cluster level including singles and doubles with a perturbative inclusion of the triples. Thus, to obtain well-converged alpha and gamma values at low-order electron correlation levels, the removal of spin contamination is a necessary but not a sufficient condition. Density-functional theory calculations of alpha and gamma have also been carried out using several exchange-correlation functionals. Those employing hybrid exchange-correlation functionals have been shown to reproduce fairly well the reference coupled cluster polarizability and second hyperpolarizability values. In addition, inclusion of Hartree-Fock exchange is of major importance for determining accurate polarizability whereas for the second hyperpolarizability the gradient corrections are large.  相似文献   

16.
The potential energy surface (PES) of Ti@C(28) has been revisited, and the stationary points have been carefully characterized. In particular, the C(2v) symmetry structure considered previously turns out to be a transition state lying 2.3 kcal/mol above the ground state of C(3v) symmetry at the MP2/6-31G(d) level. A large binding energy of 181.3 kcal/mol is found at the ROMP2/6-31G(d) level. Topological analysis of the generalized Ti@C(28) density reveals four bond paths between Ti and carbon atoms of the host. The character of all four contacts corresponds to a partially covalent closed shell interaction. UV-vis, IR, and Raman spectra are calculated and compared with C(28)H(4). The dipole moment and the static electronic and double harmonic vibrational (hyper)polarizabilities have been obtained. Distortion of the fullerene cage due to encapsulation leads to nonzero diagonal components of the electronic first hyperpolarizability β, and to an increase in the diagonal components of the electronic polarizability α and second hyperpolarizability γ. However, introduction of the Ti atom causes a comparable or larger reduction in most cases due to localized bonding interactions. At the double harmonic level, the average vibrational β is much larger than its electronic counterpart, but the opposite is true for α and for the contribution to γ that has been calculated. There is also a very large anharmonic (nuclear relaxation) contribution to β which results from a shallow PES with four minima separated by very low barriers. Thus, the vibrational γ (and α) may, likewise, become much larger when anharmonicity is taken into account.  相似文献   

17.
The intensity-carrying mode (ICM) theory is developed for analyzing the vibrational motions that mainly contribute to vibrational polarizabilities and hyperpolarizabilities, which are important for describing intermolecular electrostatic interactions and nonlinear optical properties of molecules. The ICMs are derived from dipole derivatives, polarizability derivatives, and first hyperpolarizability derivatives by using algebraic properties of intensity formulas. The way to obtain explicit forms of ICMs, including the optimization method of the basis of the ICM vector space, is discussed in detail. One- and two-dimensional models are constructed on the basis of the ICMs. The theory is applied to three molecules (a push-pull type polyene, a streptocyanine dye cation, and a symmetric neutral polyene) taken as typical examples. It is shown that the ICM theory provides a reasonable picture on the vibrational polarization properties of these molecules. On the basis of this result, the validity of the valence-bond charge transfer (VB-CT) model, which is a one-dimensional model and is widely used to describe the electronic and vibrational properties of dye molecules, is also discussed.  相似文献   

18.
We report reliable ab initio finite field (hyper)polarizability values at Hartree-Fock and second order Moller-Plesset perturbation theory (MP2) levels of theory for different geometrical configurations of small gallium arsenide clusters Ga(n)As(n) with n=2-5. We relied on all-electron basis sets and pseudopotentials suitable for (hyper)polarizability calculations. In each case, we used structures that have been established in the literature after we optimized their geometries at B3LYP/cc-pVTZ-PP level of theory. Our results suggest that the first order hyperpolarizability (beta) is much more sensitive to the special geometric features than the second order hyperpolarizability (gamma). For the most stable configurations up to ten atoms the second order hyperpolarizability at MP2 level of theory varies between 15 x 10(4) and 32 x 10(4) e(4)a0 (4)Eh(-3). In addition, we examined the polarizability per atom evolution versus the cluster size for Ga(n)As(n) with n=2-9. Our work extends earlier theoretical studies which were limited to eight atoms and exposes that the polarizability/atom of the most stable stoichiometric configurations up to Ga(9)As(9) continues the monotonic downward trend with increasing size. Lastly, from the methodological point of view, our analysis shows that apart from polarizabilities, augmented pseudopotentials yield reliable first and second hyperpolarizability values as well.  相似文献   

19.
In this paper, the second and third order polarizabilities of small Ga(n)As(m) (n + m=4-10) clusters are systematically investigated using the time dependent density functional theory (TDDFT)6-311+G* combined with the sum-over-states method (SOSTDDFT6-311+G*). For the static second order polarizabilities, the two-level term (beta(vec.2)) makes a significant contribution to the beta(vec) for all considered Ga(n)As(m) clusters except for the Ga3As4 cluster. And, for the static third order polarizabilities, the positive channel (gamma(II)) makes a larger contribution to gamma(tot) than the negative channel (gamma(I)). Similar to the cubic GaAs bulk materials, the small Ga(n)As(m) cluster assembled materials exhibit large second order (1 x 10(-6) esu) and third order susceptibilities (5 x 10(-11) esu). The dynamic behavior of beta(-2omega; omega, omega) and gamma(-3omega; omega, omega, omega) show that the small Ga(n)As(m) cluster will be a good candidate of nonlinear optical materials due to the avoidance of linear resonance photoabsorption.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号