首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
We experimentally demonstrate an all-optical 10 Gb/s format conversion from non-return-to-zero (NRZ) on-off-keying (OOK) to return-to-zero (RZ)-OOK with tunable duty cycle in the whole C-band using nonlinear polarization rotation (NPR) arising in an semiconductor optical amplifier (SOA). The experimental results show that, by tuning the polarizer at the SOA output, an RZ signal with tunable duty cycle from 33% to 66% could be obtained with an extinction ratio(ER) over 10 dB. In addition, we show that the NRZ-to-RZ conversion with duty cycle of 33-66% can be obtained with less than 1 dB power penalty at the bit error ratio (BER) of 10−9. The device can facilitate the cross-connection between optical transmission networks employing different modulation formats.  相似文献   

2.
We experimentally study both reshaping of nonreturn-to-zero (NRZ) signal and NRZ to pseudoreturn-to-zero (PRZ) format conversion based on self-phase modulation of a semiconductor optical amplifier (SOA) and detuning an optical bandpass filter (OBF). When an OBF with 1 nm bandwidth is blue shifted by 0.8 nm, the distortion of the amplified NRZ signal at 10 Gbit/s is shown to be eliminated completely. When an OBF with 0.32 nm bandwidth is red shifted by 0.42 nm from the carrier frequency, NRZ-to-PRZ conversion at 10 Gbit/s is obtained. A holding beam is used to suppress the SOA noise and improve the output extinction ratio (ER). The output ER of both the reshaped NRZ and the converted PRZ is larger than 10 dB when the signal wavelength is longer than 1540 nm, and an input power dynamic range from −7 dBm to 2 dBm is obtained at a signal wavelength of 1563.6 nm. The average power of the reshaped NRZ signal is about 3 dBm at an input power dynamic range of 13 dB. The amplitude fluctuation of the converted PRZ signal is around 1.6 dB.  相似文献   

3.
We have experimentally generated optical orthogonal frequency-division multiplexing (OOFDM) signals by a phase modulator (PM). The generated OOFDM signal can tolerant higher nonlinear effects in fiber than that generated by an intensity modulator because of its lower peak-to-average power ratio (PAPR). It is shown that, by using a PM, the PAPR of the OOFDM signal has a 2-3 dB reduction and the input power in fiber can be improved over 3 dB.  相似文献   

4.
Dong Xue 《Optics Communications》2010,283(6):1059-1061
We present an all-fiber design for a single polarization Yb-doped fiber laser with all-fiber connections spliced. Single polarization with a high extinction ratio was achieved by the design of a laser cavity consisting of a fiber Bragg grating inscribed on a single-polarization fiber as a high reflective mirror and a piece of end-cleaved single-polarization fiber as an output coupler. The fiber laser operates at 1063.25 nm with an output power of 1.7 W, an optical signal- to-noise ratio of 70 dB and a narrow bandwidth of 54 pm. The laser output has a polarization extinction ratio of 700:1 or 28 dB, and a very stable power output.  相似文献   

5.
In this paper, we demonstrate mitigation of pattern-induced degradation in an optical crosspoint switch (OXS) matrix by utilizing differential phase shift keying (DPSK) modulation format. We experimentally demonstrate 4 × 4 unicast optical packet switching and dynamic reconfiguration for 4-channel, 200 GHz spacing of RZ-DPSK payloads. Reconfigurable time as fast as 2 ns is achieved owing to the optimized control circuit and device fabrication. The power and wavelength dependence are obtained for the RZ-DPSK payload. We also investigate the cascadability of the OXS based on re-circulating loops. Due to the great suppression of the pattern effect in OXS, DPSK has shown dramatical improvement of switching properties compared to conventional ON-OFF keying (OOK) signal. The DPSK payload can outperform OOK for 3.2 dB after 9 hops optical switching.  相似文献   

6.
A novel scheme is proposed for frequency sextupling mm-wave generation based on a laser and an integrated dual-parallel Mach-Zehnder modulator (MZM) without optical filter. Theoretical analysis is presented to suppress the undesired optical sidebands for the high quality generation of frequency sextupling mm-wave signal. The performance of the proposed scheme is evaluated by simulations. Utilizing the integrated MZM consisted of two sub-MZMs with extinction ratio of 30 dB, the optical sideband suppression ratio (OSSR) is as high as 29.9 dB and the radio frequency spurious suppression ratio (RFSSR) exceeds 24 dB without any optical or electrical filter. The impact of the nonideal RF driven voltage and phase difference of RF driven signal applied to two sub-MZMs of the integrated MZM on OSSR and RFSSR is discussed and analyzed. After transmission over fiber, the generated optical mm-wave signal demonstrates good performance. Furthermore, the performance of two cases for the proposed scheme is also compared.  相似文献   

7.
According to the present passive optical network (PON) standard, the fiber transmission lengths are from 500 m to 20 km between the optical line terminal (OLT) and different optical network units (ONUs). It will result in difference power losses (ΔPloss) from 4 to 5 dB. Hence, we propose to adjust adaptively the output optical power of the upstream laser diode (LD) depending on the different fiber lengths. With the different fiber transmission lengths, we can properly adjust the bias current and modulation index of upstream LD for energy-saving. We characterize and analyze experimentally the relationship of output optical power and modulation amplitude Vamp under different fiber transmissions in PON access. Moreover, due to the adaptive power control of upstream signal, the optical upstream equalization also can be retrieved with power variation of 1.1 dB in this experiment.  相似文献   

8.
A sub-terahertz switch is realized by infiltration of a two-dimensional photonic crystal (PC) with the liquid crystal 5CB. On-off switching is based on a shift of the bandgap of the PC by applying an external electric field which rotates the 5CB molecules. We confirm theoretically and experimentally that rotating the optical axis of the 5CB molecules considerably affects the transmission of the electromagnetic waves of TM polarization in the stop band. The effect can be used for on-off switching of the electromagnetic waves in the sub-terahertz range. Experimentally we demonstrate an extinction ratio of 13.3 dB at 91 GHz.  相似文献   

9.
Reconfigurable multi-channel optical power splitter is proposed and its optical properties are calculated. The device can dynamically reconfigure the number of splitting channels by providing programmed refractive index modulations on a multimode interference (MMI) waveguide. A reconfigurable 3-channel optical power splitter is designed to work as 1 × 1, 1 × 2 or 1 × 3 optical power splitter depending on the state of the heat electrodes using thermo-optic modulation, and the input light can be distributed to three output channels with sequential orders. The device can work in the whole C-band (1530-1565 nm) with extinction ratio better than −29.0 dB, excess loss better than −0.45 dB, imbalance better than 0.08 dB and polarization dependent loss (PDL) better than 0.14 dB. The design conception is scalable to a multi-channel splitting-on-demand optical power splitter which can divide input light to 1, 2, …, N output channels equally by using the 3-channel reconfigurable optical power splitter as a building block.  相似文献   

10.
A novel 1 × N optical switch array based on arrayed waveguide grating (AWG) structure is presented in this paper. The device is designed for polymeric materials with a large negative thermooptic (TO) coefficient, which is employed to change the imaging effect and to realize optical switching. When input wavelength is located in a special waveband, the optical signal will image at different output channel as temperature changes. The two-dimensional finite difference beam propagation method (FD-BPM) has been used to simulate a 1 × 9 optical switch array. The insertion loss of this switch array is below 1.37 dB and the extinction ratio is better than 31 dB at 1550 nm, when the coupling and propagation loss is neglected. The optimum design and the simulation results show that this structure could be a multiple wavelengths switching at the same time.  相似文献   

11.
We propose and demonstrate an all-fiber high Q Mach-Zehnder interferometer (MZI)-coupled microknot resonator (MZKR) structure using optical microfibers drawn from silica fibers. The experimental results show that this microfiber-based structure achieved a high Q factor of ∼ 15,000 and good interference fringes with extinction ratio of up to ∼ 15 dB. By optimizing the loop-length of the microfiber knot and the optical path-difference of the MZI, the desired MZKR with higher Q factor and better extinction ratio could be obtained. A series of integrated all-fiber optical devices could be realized based on such a MZKR structure due to its outstanding advantages of easy fabrication, great flexibility, low cost, low loss, etc.  相似文献   

12.
We present a multi-wavelength mode-locked fiber ring laser incorporating a semiconductor optical amplifier (SOA) and a Fabry-Perot semiconductor optical amplifier (FP-SOA). Because the gain of the SOA is depleted by an external injection optical signal, the SOA acts as a loss modulator. The FP-SOA serves as a tunable comb filter. The presented laser source can generate 19 synchronized wavelength channels with the extinction ratio of about 21 dB, each mode-locked at 10 GHz, and mode-locked pulse width is about 40 ps. Oscillation wavelengths band can be tuned by adjusting the bias current of the SOA, and wavelength spacing also can be changed by using a tunable optical delay line (ODL) or a temperature controller. The polarization-insensitive devices ensure that the output power is rather stable. This fiber laser has potential applications in longer waveband (L-band) within the low-attenuation window.  相似文献   

13.
In order to optimize the performance of three level code division multiplexing (3LCDM) at 2×20 Gb/s data rate, signal level spacing technique is investigated in this paper. The 3LCDM performance is improved considerably using both electrical and optical level spacing optimization configurations. The results demonstrate that by optimization, in conditions of the optical signal-to-noise ratio, an improvement of around 4.5 dB can be achieved in both approaches as well as 3.3 dB in the electrical configuration and 3.5 dB in the optical configuration can be accomplished for the 3LCDM in terms of the receiver sensitivity.  相似文献   

14.
The 40 Gb/s optical frequency converter for non-return to zero differential phase shift keying (NRZ-DPSK) signal by using four wave mixing in semiconductor optical amplifier (SOA) have achieved sucessfully. The optimized signal-to-pump ratio for NRZ-DPSK by using optimized SOA structure with enhanced FWM effect is also evaluated. The optimum signal-to-pump ratio is 12 dB and 10 dB with Q factor penalty of 0.685 dB and 0.663 dB. The dependence of four wave mixing efficiency and converted signal power on signal input power is studied and it is evaluated that four wave mixing efficiency decreases with increase in the input power. The impact of pump power, signal-to-pump ratio, and SOA parameters with Q factor penalty for 40 Gb/s has been illustrated. It has shown that converted signal power increases up to the saturation power of semiconductor optical amplifier, then decreases. It is observed that for the optimum pump power, OSNR of converted signal varies little with signal input power.  相似文献   

15.
Ku YC  Chan CK  Chen LK 《Optics letters》2007,32(12):1752-1754
We propose and experimentally demonstrate a novel in-band optical signal-to-noise ratio (OSNR) monitoring technique using a phase-modulator-embedded fiber loop mirror. This technique measures the in-band OSNR accurately by observing the output power of a fiber loop mirror filter, where the transmittance is adjusted by an embedded phase modulator driven by a low-frequency periodic signal. The measurement errors are less than 0.5 dB for an OSNR between 0 and 40 dB in a 10 Gbit/s non-return-to-zero system. This technique was also shown experimentally to have high robustness against various system impairments and high feasibility to be deployed in practical implementation.  相似文献   

16.
Anu Sheetal  Ajay K. Sharma 《Optik》2009,120(14):704-709
We investigate the impact of extinction ratio of single arm sin2 LiNbO3 Mach-Zehnder (MZ) amplitude modulator on the performance of 10 and 20 Gb/s single-channel optical communication system. For different fiber lengths, the system performance has been analyzed with the increase in the extinction ratio. The effect of variation in dispersion parameter has also been illustrated. The impact of extinction ratio (ζ), dispersion parameter and length of the fiber has been further optimized with minimum bit error rate (BER) at optimal decision threshold (10−9) for 10 and 20 Gb/s bit rate. It is found that the system gives optimum performance at extinction ratio (ζ) value 20 dB. The increase in the transmission distance from 468 km for 10 Gb/s to 532 km for 20 Gb/s has been reported, and 8 dB improvement in the Q value has been observed as the value of ζ is increased from 10 to 20 dB. At 20 Gb/s, the system gives optimum performance for dispersion parameter value only up to 4 ps/nm km; however, at 10 Gb/s the system can operate for dispersion values up to 14.3 ps/nm km. Further we investigate the self-phase modulation (SPM) effect for the increase in the input power. It is observed that the SPM effect is negligible below 3 dB m input power and it increases at higher power levels.  相似文献   

17.
We propose a novel optical mm-wave generation scheme based on three parallel Mach-Zehnder modulators (MZMs) for the first time. First, the scheme is investigated theoretically, which suggests that it can be used for sextupling, 12-tupling, and 18-tupling mm-wave generation. Then simulation results are given, 60 GHz mm-wave is generated from 5 GHz, or 10 GHz RF oscillator based on frequency 12-tupling or sextupling, and 90 GHz mm-wave is generated from 5 GHz RF oscillator based on frequency 18-tupling. The optical sideband suppression ratio (OSSR) and the radio frequency spurious suppression ratio (RFSSR) are analyzed by simulation, in which several non-ideal factors are taken into consideration. Results indicate that all the three mm-wave generation methods are practical and very good performance can be obtained when the extinction ratio of the MZM is 30 dB, even if the extinction ratio of the MZM is 20 dB, the performance is still good, especially for the sextupling mm-wave generation method, whose performance is excellent and insensitive to the extinction ratio of MZM, the non-ideal RF driving voltage and the non-ideal DC bias. At last, we set up a RoF system by simulation to verify the transmission performance of the scheme. The BER performance and eye diagrams are given.  相似文献   

18.
We have demonstrated a simple ring cavity tunable multiwavelength Brillouin/Erbium fiber laser (MWBEFL), in which 70 m highly nonlinear photonic crystal fiber (HNL-PCF) is used as the Brillouin gain medium. The fiber laser utilizes recycling mechanism to enhance stimulated Brillouin scattering (SBS). The configuration that consists of only 3 optical components is easy to be integrated and improves the practicality. At the maximum 1480 nm pump power of 110 mW and the Brillouin pump power of 3 dBm, 10 stable output channels with more than 10 dB optical signal to noise ratio (OSNR) and 0.078 nm channel spacing could achieve 10 nm tuning ranges.  相似文献   

19.
A novel configuration of fiber laser with frequency modulation is presented. Frequency modulation, stable polarization state and narrow linewidth are realized by using the waveguide phase modulator, polarization maintaining devices and saturable absorber. It is shown that the laser output reaches 23 mW, linewidth is less than 1 kHz, polarization extinction ratio is higher than 20 dB and maximum value of frequency deviation can reach 7.5 MHz.  相似文献   

20.
A novel dual functional device that combines functions of polarizing and bandpass filtering together using a single subwavelength structure is proposed. Characteristics of both wavelength filtering and polarizing in the visible wavelength range with two different multi-layer subwavelength structures are investigated. It is found that both filtering and polarizing functions can be realized simultaneously by appropriate design of the substrate, a dielectric layer and a metallic layer system. Dependence of tunable filtering central wavelength on the properties of layered materials and structural dimensions are discussed in detail. Typical optimized multilayer structural parameters are obtained, in which ~ 75% passband transmission with > 30 dB polarization extinction ratio have been achieved simultaneously for three primary color (red, green and blue) filters. The results open new possibilities in designing and fabricating novel multi-functional polarizing and filtering photonic devices using a single subwavelength structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号