首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We demonstrate a narrow-band photon pair source on a rubidium (Rb) D2 line (780 nm) using a periodical poled KTiOPO4 crystal via a degenerate optical parametric oscillator far below threshold. The single longitudinal mode is selected by a spectral filtering cavity. The measured cross correlation between two photons shows that the generated photon has a linewidth of 21 MHz, which is comparable to the typical linewidth of an atomic-based quantum memory. The detected photon pair rate is about 2.7/s/MHz/mW. This system could be utilized for many applications in quantum information field, such as the storage and retrieval of a photon in Rb atomic ensemble and so on.  相似文献   

2.
We report on the generation of femtosecond blue pulses from a two-branch mode-locked erbium-doped fiber source. This is achieved by sum-frequency mixing in β-barium borate between the frequency doubled laser radiation at 770 nm and a tunable near-infrared component generated inside a highly nonlinear fiber. Small angle tuning of the nonlinear crystal leads to a continuously variable output wavelength in the visible band between 460 nm and 500 nm. Average power levels exceeding 1.5 mW were collected throughout the entire tuning range of our device, which delivered sub-300-fs pulses at a repetition rate of 98 MHz. These values indicate that the input near-infrared radiation is up-converted with a photon efficiency of 20%.  相似文献   

3.
An integrated photonic microwave reconfigurable filter was proposed and realized incorporating a tunable polymeric ring resonator. Its passband could be shaped electrically by shifting the resonant peaks of the resonator via the thermo-optic effect. As for the achieved performance, the center frequency was 20 GHz, the extinction ratio ∼15 dB, the bandwidth 2 GHz, and the corresponding quality factor 10. The microwave output within the passband was varied efficiently by ∼27 dB with the rate of ∼6.7 dB/mW, while the wavelength tuning rate of the resonator was −0.02 nm/mW.  相似文献   

4.
A passively Q-switched Er-doped fiber laser using a semiconductor saturable absorber mirror (SESAM) is demonstrated. Q-switching is observed with the output power produced at a slope efficiency of 29.4% with respect to the absorbed pump power. The maximum average output power of 8.37 mW is achieved. The pulse repetition frequency obtained can be turned from 1.72 to 7.95 kHz. The pulse energy of 17.2 nJ has been obtained at the pump power of 46.75 mW, and the pulse width is 30 μs.  相似文献   

5.
Using a section of un-pumped Er/Yb co-doped fiber (EYDF) as a saturable absorber, Self-Q-switching and self-mode-locking pulses have been obtained in an all-fiber EYDF ring laser. Such laser is with the self-Q-switched pulse threshold of 135.22 mW, the repetition rate of approximately 22.2 kHz, and the pulse duration of ∼2.8 μs, respectively. The self-mode-locked threshold is 591.8 mW. By incorporating the saturable absorption in an un-pumped EYDF and a Mach-Zehnder interferometer, when the pump power is increased to 1242.9 mW, the continuous-wave (CW) mode-locking with the pulse width of 26 ns has also been demonstrated experimentally for the first time.  相似文献   

6.
Using nonlinear photoinduced anisotropy in bacteriorhodopsin (bR) film, we presented and demonstrated an image switch in which the output can be tuned continuously by the intensity of a pumping beam. A laser with wavelength 532 nm was used as the pumping beam, and a He-Ne laser at wavelength 632.8 nm was used as the probe beam. Without pumping light, a little of polarized probe beam can transmit the crossed polarizers and the output is very low. With the presence of pumping light, owing to photoinduced anisotropy in the bR film, a portion of the probe beam transmits the crossed polarizers, depending on the intensity of the pumping beam. For the low-intensity probe beam (0.44 mW/cm2), the output is dependent on a wide range of pumping beam (2-30 mW/cm2). On the contrary, for the high-intensity probe beam (0.80 mW/cm2), the output is dependent on a narrow range of pumping beam (2-7 mW/cm2).  相似文献   

7.
We demonstrate a Fourier-domain mode-locked wavelength-swept laser that uses a polygon-based narrowband optical scanning filter and a high-efficiency semiconductor optical amplifier. Peak and average output powers of 98 mW and 71 mW have been achieved, respectively, without an external amplifier, while the wavelength was swept continuously from 1247 nm to 1360 nm. A unidirectional wavelength sweeping rate of 7452 nm/ms (65.95 kHz repetition rate) was achieved by using a 72 facet polygon scanner with a rotation rate of 916 revolutions per second. The instantaneous linewidth of this laser is 0.09 nm, which corresponds to a coherence length of 16 mm. This laser is most suitable for optical coherence tomography applications.  相似文献   

8.
Angle SR  Sena K  Sumner DR  Virdi AS 《Ultrasonics》2011,51(3):281-288
Bone growth and repair are under the control of biochemical and mechanical signals. Low-intensity pulsed ultrasound (LIPUS) stimulation at 30 mW/cm2 is an established, widely used and FDA approved intervention for accelerating bone healing in fractures and non-unions. Although this LIPUS signal accelerates mineralization and bone regeneration, the actual intensity experienced by the cells at the target site might be lower, due to the possible attenuation caused by the overlying soft tissue. The aim of this study was to investigate whether LIPUS intensities below 30 mW/cm2 are able to provoke phenotypic responses in bone cells. Rat bone marrow stromal cells were cultured under defined conditions and the effect of 2, 15, 30 mW/cm2 and sham treatments were studied at early (cell activation), middle (differentiation into osteogenic cells) and late (biological mineralization) stages of osteogenic differentiation. We observed that not only 30 mW/cm2 but also 2 and 15 mW/cm2, modulated ERK1/2 and p38 intracellular signaling pathways as compared to the sham treatment. After 5 days with daily treatments of 2, 15 and 30 mW/cm2, alkaline phosphatase activity, an early indicator of osteoblast differentiation, increased by 79%, 147% and 209%, respectively, compared to sham, indicating that various intensities of LIPUS were able to initiate osteogenic differentiation. While all LIPUS treatments showed higher mineralization, interestingly, the highest increase of 225% was observed in cells treated with 2 mW/cm2. As the intensity increased to 15 and 30 mW/cm2, the increase in the level of mineralization dropped to 120% and 82%. Our data show that LIPUS intensities lower than the current clinical standard have a positive effect on osteogenic differentiation of rat bone marrow stromal cells. Although Exogen™ at 30 mW/cm2 continues to be effective and should be used as a clinical therapy for fracture healing, if confirmed in vivo, the increased mineralization at lower intensities might be the first step towards redefining the most effective LIPUS intensity for clinical use.  相似文献   

9.
An optical pump terahertz (THz) probe method for measuring carrier mobility and multiphoton absorption coefficients in semiconductors is demonstrated. A THz probe pulse is used to detect the transient photoconductivity generated by an optical pump pulse. The change in transmission coefficient at THz frequencies due to a pump pulse with photon energy greater than the band gap energy is used to determine the sum of electron and hole mobilities. The weak nonlinear absorption of a pump pulse with photon energy less than the band gap energy produces an approximately uniform free carrier distribution. The THz transmission coefficient vs. pump fluence, and the mobility, are used in a bulk photoconductivity model to determine the multiphoton absorption coefficients. For GaAs, InP and Si we find two photon absorption coefficients at 1305 nm of 42.5 ± 11, 70 ± 18 and 3.3 ± 0.9 cm/GW, respectively. For GaAs and InP we determine three photon absorption coefficients at 2144 nm of 0.19 ± 0.07 and 0.22 ± 0.08 cm3/GW2.  相似文献   

10.
In an effort to identify techniques for harvesting energy from ambient vibrations, a prototype device that utilizes stretching piezoelectric film to support a proof mass, with an adjustable support that allows the resonant frequency of the device to be easily altered, has been developed. This extensional mode resonator (XMR) device is described by a model developed in this paper that predicts the power that is harvested as a function of the frequency and amplitude of the external vibration, the elastic and piezoelectric materials properties, and the device geometry. The model provides design guidelines for the effects of device geometry and applied tension through an adjustable support that suggest a strong dependence on mechanical damping and a weak dependence on frequency, as opposed to a bending cantilever device. The model predictions are compared to experimental measures from a prototype device for frequencies between 120 and 180 Hz, and at accelerations between 0.1 and 10 m/s2. Up to 9 mW is generated from a device with a mass of ∼82 g, and over the range of frequencies tested the power harvested at 4 m/s2 is between 3 and 4 mW.  相似文献   

11.
An all-optically generated millimeter wave carrier at 21.7 GHz, 43 GHz and 64.45 GHz are experimentally achieved. These frequencies are realized by generating two consecutively laser wavelengths and are detecting on the 70 GHz high-speed photo detector (HSPD). The initial mixing between the Brillouin pump and the second-order Stokes wavelengths is spaced by 0.178 nm. This spacing, which is doubled from an inherently generated Stokes shift, is accomplished through an isolated circulation of the first order Stokes wave in the double Brillouin Stokes shifter (DSBS) built with 25-km single mode fiber. The generated millimeter carrier is measured at 21.7 GHz, 43 GHz and 64.4 GHz achieved with BP power of 11 mW, 30 mW and 47 mW, respectively.  相似文献   

12.
We reported an actively Q-switched, intracavity Nd3+:YVO4 self-Raman laser at 1176 nm with low threshold and high efficiency. From the extracavity frequency doubling by use of LBO nonlinear crystal, over 3.5 mW, 588 nm yellow laser is achieved. The maximum Raman laser output at is 182 mW with 1.8 W incident pump power. The threshold is only 370 mW at a pulse repetition frequency of 5 kHz. The optical conversion efficiency from incident to the Raman laser is 10%, and 1.9% from Raman laser to the yellow.  相似文献   

13.
A laser diode end-pumped 10 at.% doped Yb:YAG microchip crystal intracavity frequency doubled all solid-stated green laser is reported in this paper. Using one plano-concave resonator, with the pump power of 1.2 W, 44.2 mW TEM00 continuous wave (CW) laser at 525 nm was obtained, the optical conversion efficiency was about 3.7%. When a Cr:YAG crystal with initial transmission of 95.5% inserted in the resonator, the maximum output power of 6.4 mW, pulse duration width of 49.1 ns, pulse repetition rate of 2.45 kHz, and peak power of 53.1 W at 515 nm were achieved when the pump power was 1.2 W. The wavelength changed from 525 nm to 515 nm and the threshold was only 725 mW.  相似文献   

14.
Polarized second harmonic measurements are used to determine the in- and out-of plane orientations of molecular dipoles in optical active, elongated, surface bound nanoaggregates. As a specific example, nonlinear optical active nanofibers grown from CNHP4 molecular dipoles on muscovite mica are investigated. The orientation of the dipoles relative to the substrate is found to be 7 ± 5°, whereas that of the dipoles relative to the long nanofiber axes is ± 13 ± 5°. Following 780 nm femtosecond laser excitation, the two photon action potential ησ2 for CNHP4 is determined to be 4.7 × 10−54 cm4 s/photon. For comparison, ησ2 for para-hexaphenylene nanofibers is measured to be 12 × 10−54 cm4 s/photon.  相似文献   

15.
This paper proposes ultrasonic transcutaneous energy transfer (UTET) based on a kerfless transmitter with Gaussian radial distribution of its radiating surface velocity. UTET presents an attractive alternative to electromagnetic TET, where a low power transfer density of less than 94 mW/cm2 is sufficient. The UTET is operated with a continuous wave at 650 kHz and is intended to power devices implanted up to 50 mm deep. The transmitter was fabricated using a 15 mm diameter disc shape PZT (Lead Zirconate Titanate) element (C-2 grade, Fujiceramics Corporation Tokyo Japan), in which one surface electrode was partitioned into six equal area electrodes (∼23 mm2 each) in the shape of six concentric elements. The UTET was experimented using pig muscle tissue, and showed a peak power transfer efficiency of 39.1% at a power level of 100 mW. An efficient (91.8%) power driver for the excitation of the transmitter array, and an efficient rectifier (89%) for the implanted transducer are suggested.To obtain the pressure field shape, the Rayleigh integral has been solved numerically and the results were compared to finite element simulation results. Pressure and power transfer measurements within a test tank further confirm the effectiveness of the proposed UTET.  相似文献   

16.
We fabricated and characterized periodically poled MgO:LiNbO3 device with five gratings in 0.5 μm increments from 29 μm to 31 μm for optical parametric oscillator (OPO). The OPO operation threshold is 30 μJ using this device with a 50 mm effective length. At 560 mW input pump power, we have achieved 300 mW of the total output power, and the conversion efficiency is 54%. Multi-periods and temperatures tuning of the OPO yields a signal wavelength range from 1.45 to 1.72 μm and an idler wavelength range from 2.8 to 4.05 μm in the mid infrared.  相似文献   

17.
A 980 nm bottom-emitting vertical-cavity surface-emitting laser (VCSEL) array with a nonuniform linear arrangement is reported to realize high power with a Gaussian far-field distribution. This array is composed of five symmetrically-arranged elements of 200 μm, 150 μm, and 100 μm diameters, with the center spacing of 300 μm and 250 μm respectively. This structure makes it possible to discriminate against the higher order array supermodes. The theoretical simulation of the far-field distribution is in good agreement with the experimental result. An output power of 880 mW with a power density of 1 KW/cm2 is obtained. The divergence angle is below 20° in the range of operating current from 0 A to 4 A. The comparison between this nonuniform linear array and the conventional two-dimensional array is carried out to demonstrate the good performance of the linear array. A peak power of over 20 W is achieved under a short pulsed operation with a repetition frequency of 1 kHz.  相似文献   

18.
A periodically poled titanium (Ti)-diffusion waveguide in near-stoichiometric MgO:LiNbO3 (SMgLN) was fabricated that exhibits a second harmonic generation (SHG) efficiency of 63%. The device shows very high resistance to photorefractive damage at room temperature. All optical wavelength conversion by difference frequency generation (DFG) has been demonstrated in a periodically poled SMgLN (PPSMgLN) with Ti-diffusion channel waveguides. The wavelength conversion efficiency was measured to be −7.3 dB with the pump power of 150 mW and the signal power of 50 mW at room temperature.  相似文献   

19.
We designed and fabricated a four-channel reconfigurable optical add-drop multiplexer based on silicon photonic wire waveguide, which is controlled through the thermo-optic effect. The effective footprint of the device is about 1000 × 500 μm2. The minimum insertion loss including the transmission loss and coupling loss is about 10.7 dB. The tuning bandwidth is about 17 nm, the average tuning efficiency about 6.11 mW/nm and the tuning speed about 24.5 kHz.  相似文献   

20.
We have demonstrated a continuous-wave (CW) all fiber laser operation at 1558.4 nm of a diode-pumped erbium-doped PCF laser based on 9.6 m erbium-doped PCF. The maximum output power and the threshold of the fiber laser are 49.4 mW and 6.67 mW, respectively. We show that it is possible to achieve a high stability and beam quality laser, which has a great application potential in optical communication field in future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号