首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present an all-fiber sensor for simultaneous measurement of temperature and strain. The sensing head is formed by introducing a fiber Bragg grating into a high-birefringence fiber loop mirror that acts as a Mach-Zehnder interferometer for temperature and strain discrimination. A sensing resolution of ±1 °C in temperature and ±21 με in strain has been experimentally achieved over a temperature range of 60 °C and strain range of 600 με.  相似文献   

2.
We report the successful manufacture of short fibre reinforced polymer composites via the process of ultrasonic assembly. An ultrasonic device is developed allowing the manufacture of thin layers of anisotropic composite material. Strands of unidirectional reinforcement are, in response to the acoustic radiation force, shown to form inside various matrix media. The technique proves suitable for both photo-initiator and temperature controlled polymerisation mechanisms. A series of glass fibre reinforced composite samples constructed in this way are subjected to tensile loading and the stress–strain response is characterised. Structural anisotropy is clearly demonstrated, together with a 43% difference in failure stress between principal directions. The average stiffnesses of samples strained along the direction of fibre reinforcement and transversely across it were 17.66 ± 0.63 MPa and 16.36 ± 0.48 MPa, respectively.  相似文献   

3.
Long period gratings (LPGs) were written into a D-shaped optical fibre that has an elliptical core with a W-shaped refractive index profile and the first detailed investigation of such LPGs is presented. The LPGs’ attenuation bands were found to be sensitive to the polarisation of the interrogating light with a spectral separation of about 15 nm between the two orthogonal polarisation states. A finite element method was successfully used to model many of the behavioural features of the LPGs. In addition, two spectrally overlapping attenuation bands corresponding to orthogonal polarisation states were observed; modelling successfully reproduced this spectral feature. The spectral sensitivity of both orthogonal states was experimentally measured with respect to temperature and bending. These LPG devices produced blue and red wavelength shifts depending upon the orientation of the bend with measured maximum sensitivities of −3.56 and +6.51 nm m, suggesting that this type of fibre LPG may be useful as a shape/bend orientation sensor with reduced errors associated with polarisation dependence. The use of neighbouring bands to discriminate between temperature and bending was also demonstrated, leading to an overall curvature error of ±0.14 m−1 and an overall temperature error of ±0.3 °C with a maximum polarisation dependence error of ±8 × 10−2 m−1 for curvature and ±5 × 10−2 °C for temperature.  相似文献   

4.
5.
In this letter, we propose a high resolution temperature insensitive interrogation technique for FBG sensors where one FBG acts as an edge filter to interrogate a separate FBG sensor. A high resolution of better than 5 με in strain measurement range from 0 to 1100 με and the best resolution of better than 1 με were verified by experiments. An error of only ±2.2 με is achieved over a temperature range from 15 to 50 °C, indicating that this strain interrogation technique is temperature insensitive. Using an altered system configuration, the temperature was also measured simultaneously with a resolution better than 0.2 °C.  相似文献   

6.
The underlying formation mechanisms and the properties of long-period gratings produced through arc discharges are intrinsically related to the temperature reached by the fibre during arc exposure. In this work, the determination of the fibre temperature was based on Plank’s blackbody radiation law. The radiation emitted by the optical fibre during heating due to an electric arc discharge, detected using a Cronin spectrometer, was fitted to the emission spectrum of the blackbody radiation, allowing the estimation of the temperature range attained by the fibre. A peak temperature of 1400 ± 50 °C was obtained.  相似文献   

7.
8.
A new production method of long-period fiber-gratings using neither a laser nor a fine-positioning system was proposed. A low-pressure mercury lamp emitting 254 nm ultraviolet light was used as a light source. Hydrogen-loaded Ge-B co-doped fiber was exposed to the emission of the lamp through an amplitude mask. A coupling loss up to 23 dB was obtained for a grating period of 212 μm. The maximum coupling loss for a grating period of 460 μm was 18 dB. The growth rate of the refractive index change by mercury-lamp exposure was 1.3 × 10−4/h. The temperature and strain characteristics were measured and compared with those fabricated by excimer-laser exposure. The temperature and strain sensitivities of long-period gratings with a period of 212 μm were higher than those of 460 μm. The temperature and strain sensitivities of those by mercury-lamp exposure were almost equal to those by excimer-laser exposure of the same fiber. The sensitivities of those by excimer-laser exposure of non-loaded fiber were higher than those of hydrogen-loaded fiber by mercury-lamp or excimer-laser exposures except for the temperature sensitivity of a grating period of 460 μm.  相似文献   

9.
10.
The use of short lengths of large core phosphate glass fibre, doped with high concentrations of Er or Er:Yb represents an attractive route to achieving high power erbium doped fibre amplifiers (EDFAs) and lasers (EDFLs). With the aim of investigating the potential of achieving diffraction limited output from such large core fibres, we present experimental results of fundamental mode propagation through a 20 cm length of passive 300 μm core multimode fibre when the input is a well-aligned Gaussian beam. Through careful control of fibre geometry, input beam parameters and alignment, we measured an output M2 of 1.1 ± 0.05. The fibre had a numerical aperture of 0.389, implying a V number of 236.8. To our knowledge, this is the largest core fibre through which diffraction limited fundamental mode propagation has been demonstrated. Although the results presented here relate to undoped fibre, they do provide the practical basis for a new generation of EDFAs and EDFLs.  相似文献   

11.
Temperature effects on the various cladding modes of a long-period grating (LPG) fabricated in B-Ge co-doped fibre have been investigated to create a high sensitivity measurement device. The temperature sensitivities of the attenuation bands of the LPG over the wavelength region 1.2-2.2 μm, for a grating with a 330 μm period, were obtained by monitoring the wavelength shift of each attenuation band, with a temperature increment of 20 °C, over the range from 23 °C to 140 °C. The attenuation band appearing over the 1.8-2.0 μm wavelength range has shown a nearly five times higher temperature sensitivity than that of lower order modes, and thus it shows significant promise for fibre optic temperature sensor applications.  相似文献   

12.
In this work, a Brillouin fibre laser sensor for strain and temperature discrimination is presented. The fibre laser sensor consists of a Fabry–Pérot cavity with 20 m of optical fibre between two Bragg gratings. For the strain measurement, the 20 m were split in half and in 10 m a pre-tension was applied originating two Brillouin peaks. For the temperature measurement all of the sensing head was heated. The resolutions achieved were ±1 με and ±1 °C for strain and temperature measurements, respectively. PACS 42.81.-I; 42.55.Wd; 42.65.Es  相似文献   

13.
An intensity curvature sensor using a Photonic Crystal Fiber (PCF) with three coupled cores is proposed. The three cores were aligned and there was an air hole between each two consecutive cores. The fiber had a low air filling fraction, which means that the cores remain coupled in the wavelength region studied. Due to this coupling, interference is obtained in the fiber output even if just a single core is illuminated. A configuration using reflection interrogation, which used a section fiber with 0.13 m as the sensing head, was characterized for curvature sensing. When the fiber is bended along the plane of the cores, one of the lateral cores will be stretched and the other compressed. This changes the coupling coefficient between the three cores, changing the output optical power intensity. The sensitivity of the sensing head was strongly dependent on the direction of bending, having its maximum when the bending direction was along the plane of the cores. A maximum curvature sensitivity of 2.0 dB/m−1 was demonstrated between 0 m and 2.8 m.  相似文献   

14.
Polarimetric fibre laser sensors using Er-doped fibre   总被引:1,自引:0,他引:1  
A polarimetric fibre laser sensor with narrow polarization mode beat frequency bandwidth is demonstrated using a polarization-maintaining Er-doped fibre. The slope coefficients of 124kHz°C-1 cm-1 and 137kHz m-1 are obtained for temperature change and longitudinal strain measurements, respectively. A new configuration of polarimetric fibre laser sensor is also demonstrated using a conventional Er-doped fibre as a gain medium and a short length of polarization-maintaining fibre as a sensing part.  相似文献   

15.
A simple sensing method for simultaneous measurement of temperature and strain is investigated by using a Sagnac fiber loop mirror composed of a polarization-maintaining photonic crystal fiber (PM-PCF) incorporating an erbium-doped fiber (EDF). Amplified spontaneous emission created by a pumped EDF is transmitted to a Sagnac fiber loop mirror. The interference between two counter-propagating signals in a Sagnac fiber loop mirror generates a periodic transmission spectrum with respect to wavelength. When external temperature is increased, the transmission peak power reduces because the amplified spontaneous emission of the EDF is decreased by the applied temperature change (0.04 dB/°C). The peak wavelength is shifted into the shorter wavelength because of the negative temperature dependence of the birefringence of the PM-PCF (0.3 pm/°C). As the applied strain increases, the peak wavelength of the transmission spectrum of the Sagnac loop mirror incorporating the EDF shifts into a longer wavelength (1.3 pm/με) because the phase change of the proposed sensing probe is directly proportional to the applied strain. The transmission peak power, however, is not changed by the applied strain. Since the source and the sensing probe are integrated, the overall system configuration is significantly simplified without requiring any additional broadband light source. Therefore, it is possible to simultaneously measure temperature and strain by monitoring the variation of transmission peak power and peak wavelength, respectively.  相似文献   

16.
A highly birefringent photonic bandgap Bragg fiber loop mirror configuration for simultaneous measurement of strain and temperature is proposed. The group birefringence and the sharp loss peaks are observable in the spectral response. Because the sensing head presents different sensitivities for strain and temperature measurands, these physical parameters can be discriminated by using the matrix method. It should be noted that this Bragg fiber presents high sensitivity to temperature, of ~5.75?nm/°C, due to the group birefringence variation. The rms deviations obtained are ±19.32?με and ±0.5?°C, for strain and temperature measurements, respectively.  相似文献   

17.
We propose optical fibre based filters employing dual-core resonant leaky structure for gain equalization of erbium doped fibre amplifier (EDFA). Spectral loss variation of the structure has been utilized to suppress gain peak and, thus, flatten overall gain profile in the C-band. We show 15.7 dB flat gain with ± 1.6 dB ripple in the wavelength range from 1525 nm to 1555 nm using a single filter and 18±0.7 dB gain using two cascaded filters.  相似文献   

18.
A sensor has been fabricated by the integration of a fiber Bragg gating sensor (FBGs) with a fiber Fabry-Perot (F-P) sensor fabricated by etching method. In the integrated sensor, the FBG was used to measure temperature, while the fiber Fabry-Perot interferometer sensor (FFPIs) was used for strain measurement. Wavelength decoding for FBG and peak tracking for FFPI was employed for demodulation, respectively. The result showed that the temperature and strain sensitivity for the integrated sensor is ~ 2.7 pm/μεand ~ 9.3 pm/°C, respectively.  相似文献   

19.
A high-birefringent (Hi-Bi) Sagnac loop interferometer for torsion measurement is demonstrated. The sensing head is formed by a section of standard single mode fiber spliced between the output ports of a Hi-Bi coupler at 3 dB. The sensing configuration is characterized in torsion, temperature and strain. The results obtained indicate the viability of a torsion sensor independent of the temperature and strain cross-sensitivity effects. Additionally, in the proposed configuration all measurements are performed without the need of a polarization controller, a device most often required in standard Sagnac loops applied for sensing.  相似文献   

20.
The interrogation of fiber-Bragg-grating (FBG) sensors using a vertical-cavity surface-emitting laser (VCSEL) is discussed. A long-wavelength (1.54 μm) VCSEL was used as a wavelength-tunable source by variation in the current. Temperature stabilization was performed with a thermoelectric device. Characteristics of temperature and strain sensing were investigated. FBGs with different reflectivities were compared. For temperature sensing, the root-mean-square error in the measurement was reduced to 1/3 that without temperature stabilization. The dependence of the measurement error on the reflectivities of the FBGs was investigated. The measurement error was larger for FBGs with lower reflectivities in both temperature and strain sensing. Improvement on the sensing with low-reflectivity FBGs is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号