首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ba0.6Sr0.4TiO3 (BST) films were deposited on Pt/SiO2/Si substrates by radio frequency magnetron sputtering. The deposited films were crystallized by conventional thermal annealing (CTA) and rapid thermal annealing (RTA). The interfacial structures of BST/Pt were studied. High-resolution transmission electron microscopy (HRTEM) observation shows that there is a transition layer at BST/Pt interface, and the layer is 4-5 nm thick for CTA and 2-3 nm for RTA. X-ray photoelectron spectroscopy (XPS) investigations show that the layer is composed of perovskited BST phase and non-perovskited BST phase. The content of the non-perovskited BST phase is most for CTA, whereas that of the perovskited BST phase is most for RTA. It is found that the transition layer thickens with the increase of annealing temperature, and CTA corresponds to faster thickening rate. XPS shows that the non-perovskited BST phase does not come from the absorbed CO2 or CO contaminations, but from other interfacial elements. Also, it is indicated that the RTA-annealed BST film capacitor shows much better dielectric properties, with an average value of 150 higher dielectric constant and almost two orders of magnitude lower leakage current density than the CTA-annealed film capacitor. Grazing X-ray diffraction (GXRD) patterns exhibit that the RTA-annealed BST films present more compact structure. It is such a compact structure that can effectively prevent the absorbed elements further diffusing toward two sides, and cause thinner transition layer, thus result in higher dielectric constant and lower leakage current density.  相似文献   

2.
Pulsed laser deposition (PLD) of (Pb,Sr)TiO3 (PSrT) film on Pt/SiO2/Si at low substrate temperatures (Ts), ranging from 300–450 °C, has been investigated. As Ts increases, the films reveal coarsening clusters, improved crystallization of the perovskite phase, distinct capacitance–electric field (C–E) hysteretic loops and a larger dielectric constant. The 350 °C-deposited film shows strong (100) preferred orientation and optimum dielectric properties with the dielectric constant of ∼620. The current density increases as the measurement temperature and the electric field increase. Moreover, PSrT films exhibit a strong negative temperature coefficient of resistance (NTCR) behavior at temperatures ranging from 100 to 390 °C. PACS 81.15.Fg; 77.22.Ch; 68.60.Dv  相似文献   

3.
Fatigue-free Pb(Zr0.52Ti0.48)O3 (PZT) ferroelectric thin films were successfully prepared on indium tin oxide (ITO) coated glass substrates using the sol-gel method combined with a rapid thermal annealing process (RTA). The films post-annealed at a temperature of 700 °C for 2 min by RTA process formed (110)-oriented Pb(Zr0.52Ti0.48)O3 thin films with pure perovskite structure, and had a good morphology as well. The good ferroelectricity of the prepared PZT films was confirmed by P–E hysteresis loop measurements. Fatigue characteristics showed stable behavior. Degradation in polarization was not found while the repeating cycles were up to 1011, and a low leakage current density of 10−8 A/cm2 was also obtained from the highly fatigue-resisted PZT thin films on ITO/glass substrates. Received: 19 October 1998 / Accepted: 29 March 1999 / Published online: 26 May 1999  相似文献   

4.
Using first-principles calculations based on density-functional theory in its local-density approximation, we investigated the Electronic structure, ferroelectricity and optical properties of CaBi2Ta2O9 (CBT) for the first time. It is found that CBT compound has an indirect band gap of 3.114 eV and the O 2s and 2p states are strongly hybridized with the 6s states of Bi which belong to the (Bi2O2)2+ planes. The quite strong Ta–O and Bi–O hybridization is the primary source for ferroelectricity. Our results imply that the interaction between Bi and O is highly covalent. The anisotropy occurs mainly above 4 eV in the optical properties. The different optical properties have been discussed.  相似文献   

5.
Ultrathin InSb thin films on SiO2/Si substrates are prepared by radio frequency (RF) magnetron sputtering and rapid thermal annealing (RTA) at 300, 400, and 500℃, respectively. X-ray diffraction (XRD) indicates that InSb film treated by RTA at 500℃, which is higher than its melting temperature (about 485℃), shows a monocrystalline-like feature. High-resolution transmission electron microscopy (HRTEM) micrograph shows that melt recrystallization of InSb film on SiO2/Si(111) substrate is along the (111) planes. The transmittances of InSb films decrease and the optical band gaps redshift from 0.24 eV to 0.19 eV with annealing temperature increasing from 300℃ to 500℃, which is indicated by Fourier transform infrared spectroscopy (FTIR) measurement. The observed changes demonstrate that RAT is a viable technique for improving characteristics of InSb films, especially the melt-recrystallized film treated by RTA at 500℃.  相似文献   

6.
A novel method to investigate the early formation stages of polycrystalline (Pb1-xCax)TiO3 (PCT) perovskite films by means of traditional Brillouin and micro-Brillouin spectroscopy (BS, mBS) is described in the present work. The films were prepared by chemical solution deposition (CSD) onto oxidized (100)Si substrates and treated at temperatures between 350–650 °C by rapid thermal processing (RTP). The elastic instability observed by Brillouin spectroscopy at the nano-structured state of the PCT films was used here to determine their crystallization temperatures. Coexistence of different nanocrystalline phases (e.g., pyrochlore, perovskite) in the films could also be detected by this technique. The reliability of these results is demonstrated by complementary information obtained by X-ray diffraction (XRD) and scanning force microscopy (SFM). The effects of the annealing temperature and of the Ca2+ content on the crystallization process of these films are also discussed. PACS 78.35.+c; 77.84.-s; 61.82.Rx  相似文献   

7.
Rapid thermal annealing (RTA) is a general approach to improve the crystallinity of thin solid films. In this study, we investigated the effects of RTA on the structural and electrical properties of Na-doped ZnMgO ?lms grown by pulsed laser deposition. X-ray diffraction (XRD) results showed that the crystallinity of the Na-doped ZnMgO ?lms was improved with RTA at 400-700 °C, and the grain size became larger as the annealing temperature increased. Moreover, room-temperature photoluminescence (PL) measurements demonstrated decent optical quality of the as-deposited and annealed Na-doped ZnMgO ?lms. Hall-effect measurements showed that the hole concentration increased from 4.9 × 1014 to 6.6 × 1015 cm−3 to 1.9 × 1017 to 8.3 × 1017 cm−3 while the resistivity and the Hall mobility decreased after the RTA treatments. The conduction type of the films converted from p to n when the annealing temperature is higher than 800 °C. Therefore a wide temperature window to obtain reasonable p-type Na-doped ZnMgO films by RTA is achieved. It is important because RTA is generally needed to obtain p-type Ohmic contact in the fabrication processes of light-emitting diodes (LEDs).  相似文献   

8.
CoFe2O4 (CFO) thin film with highly (111)-preferential orientation was first deposited on the silicon substrate by a pulsed-laser deposition, and then Pb(Zr0.52Ti0.48)O3 (PZT) layers were deposited with different oxygen pressures to form the bilayer CFO/PZT nanocomposite thin films. X-ray diffraction showed that the PZT preferential orientation was strongly dependant on the oxygen pressure. The smooth film surface was obtained after depositing the CFO and PZT layers. The bilayer thin films exhibit good ferromagnetic and ferroelectric properties, and a low leakage current density of 0.004 μA/cm2 at 50 kV/cm. The leakage current density curves show loops for the electric polarized field when the electric field reverses. PACS 77.84.Lf; 75.80+q; 81.05.Zx; 81.15.Fg  相似文献   

9.
0.7BiFeO3-0.3PbTiO3 (BFPT7030) thin films were deposited on SiO2/Si substrates by sol-gel process. The influence of heating rate on the crystalline properties of BFPT7030 thin films were studied by X-ray diffraction (XRD), scanning electron microscope (SEM), atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). XRD patterns of the films showed that a pure perovskite phase exists in BFPT7030 films annealed by rapid thermal annealing (RTA) technique. SEM and AFM observations demonstrated that the BFPT7030 films annealed by RTA at 700 °C for 90 s with the heating rate of 1 °C s−1 could show a dense, crack-free surface morphology, and the films’ grains grow better than those of the films annealed by RTA at the same temperature with other heating rates. XPS results of the films indicated that the ratio of Fe3+:Fe2+ is about 21:10 and 9:5 for the films annealed by RTA at 700 °C for 90 s with the heating rate of 1 and 20 °C s−1, respectively. That means the higher the heating rate, the higher the concentration of Fe2+ in the BFPT7030 thin films.  相似文献   

10.
Gd-substituted Y1-xGdxVO4:Eu3+ luminescent thin films have been grown on Al2O3(0001) substrates using pulsed-laser deposition. The films grown under different deposition conditions have been characterized using microstructural and luminescent measurements. The crystallinity, surface morphology, and photoluminescence (PL) of the films are highly dependent on the amount of Gd. The photoluminescence (PL) brightness data obtained from Y1-xGdxVO4:Eu3+ films grown under optimized conditions have indicated that the PL brightness is more dependent on the surface roughness than the crystallinity of the films. In particular, the incorporation of Gd into the YVO4 lattice could induce a remarkable increase of PL. The highest emission intensity was observed with Y0.57Gd0.40Eu0.03VO4 thin film whose brightness was increased by a factor of 2.5 and 1.9 in comparison with that of YVO4:Eu3+ and GdVO4:Eu3+ films, respectively. This phosphor have application to flat panel displays. PACS 78.20.-e; 78.55.-m; 78.66.-w  相似文献   

11.
In this study CuInSe2 and CuInS2 thin films were prepared onto ITO glass substrate using the electrodeposition technique in aqueous solution. The electrodeposited films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray analysis. The annealing effects on electrodeposited precursors were investigated. The chalcopyrite structure of CuInSe2/CuInS2 showed an enhancement of crystallinity after subsequent selenization/sulfurization treatment in Se/S atmosphere, respectively. XRD and SEM studies revealed a dramatic improvement of the crystalline quality of CIS films after annealing treatments. Mott–Schottky measurements were used to assess the conductivity type of the films and their carrier concentration. The prepared samples underwent an etching process to remove the binary accumulated Cu2?x(Se,S) phases shown in FESEM pictures. This etching process has shown a noticeable decrease in both, the flat band potential, Vfb (V), and the number of acceptors, NA (cm?3) in selenized CuInSe2 and sulfurized CuInS2 samples.  相似文献   

12.
A discussion of optical properties of mixed oxides In2O3—SnO2 system is presented. Film thickness, substrate temperature, composition (in molar %) and annealing have a profound effect on the structure and optical properties of these films. Initially the increase in band gap with the increase of SnO2 content in In2O3 is due to the increase in carrier density as a result of donor electrons from tin. The decrease in band gap above the critical Sn content is caused by the defects formed by Sn atoms, which act as carrier traps rather than electron donors. The increase in band gap with film thickness is caused by the increase in free carrier density which is generated by (i) Sn atom substitution of In atom, giving out one extra electron and (ii) oxygen vacancy acting as two electrons donor. The decrease in band gap with substrate temperature and annealing is due either to the severe deficiency of oxygen, which deteriorate the film properties and reduce the mobility of the carriers, or to the formation of indium species of lower oxidation state (In2+).  相似文献   

13.
Ferroelectric Bi3.25La0.75Ti3O12 (BLT) thin films have been grown on Pt/Ti/SiO2/Si substrates by chemical solution methods. X-ray diffraction analysis shows that BLT thin films are polycrystalline with (171)-preferential orientation. Atomic force microscopy investigation shows that they have large grains about 120 nm in size. A Pt/BLT/Pt capacitor has been fabricated and showed excellent ferroelectricity, with a remnant polarization and coercive field of 24 μC/cm2 and 116 kV/cm, respectively. The capacitor shows no polarization fatigue up to 109 switching cycles. The optical constants (n,k) of the BLT thin films in the wavelength range 0.35–1.7 μm were obtained by spectroscopic ellipsometry measurements, and the band-gap energy was found to be about 3.25 eV. Received: 16 October 2001 / Accepted: 6 January 2002 / Published online: 3 June 2002 RID="*" ID="*"Corresponding author. Fax: +86-21/65830-734, E-mail: gswang@mail.sitp.ac.cn  相似文献   

14.
Nd3+:Y3Al5O12 (Nd:YAG) powders were prepared by the Pechini method in the temperature range of 800 to 1400 °C. The pure garnet phase of the obtained materials was confirmed by XRD studies. The size of the grains was controlled by the annealing temperature of the samples. Their morphologies were investigated by TEM and porosity measurements (BET). The effect of annealing temperature on the morphology and luminescence properties of Nd:YAG nanocrystallites was studied, and the results were compared to the properties of a Nd:YAG single crystal. A significant enhancement of the 4F3/24I9/2/4F3/24I11/2 intensity ratio with decreasing grain size was observed. It was found that the decay times of the Nd3+ luminescence depends on the specific surface and is significantly longer for well crystallized nanocrystalline grains than for single crystals having the same concentration of Nd3+ ions. The role of crystallinity and specific surface on the radiative processes is analyzed. PACS 78.55.-m; 78.20.Ci; 78.67.Bf; 78.68.+m  相似文献   

15.
One- and two-step rapid thermal annealing (RTA) for activating Mg-doped p-type GaN films had been performed to compare with conventional furnace annealing (CFA). The two-step annealing process consists of two annealing steps: the first step is performed at 750 °C for 1 min and the second step is performed at 600 °C for 5 min in pure O2 or air ambient. It is found that the samples annealed in air ambient exhibit poor electrical properties as compared to those annealed in pure O2. Compared to one-step RTA annealing and CFA annealing, the samples with two-step annealing exhibit higher hole concentration and lower resistivity. This means that the two-step annealing is a powerful method to enhance the electrical performance of Mg-doped p-type GaN films. Similar results were also evidenced by photoluminescence (PL) measurement. Possible mechanism was confirmed by secondary ion mass spectrometry analysis.  相似文献   

16.
BiFeO3 (BFO) thin films with BaTiO3 (BTO) or SrTiO3 (STO) as buffer layer were epitaxially grown on SrRuO3-covered SrTiO3 substrates. X-ray diffraction measurements show that the BTO buffer causes tensile strain in the BFO films, whereas the STO buffer causes compressive strain. Different ferroelectric domain structures caused by these two strain statuses are revealed by piezoelectric force microscopy. Electrical and magnetical measurements show that the tensile-strained BFO/BTO samples have reduced leakage current and large ferroelectric polarization and magnetization, compared with compressively strained BFO/STO. These results demonstrate that the electrical and magnetical properties of BFO thin films can be artificially modified by using a buffer layer.  相似文献   

17.
The monolayer Al2O3:Ag thin films were prepared by magnetron sputtering. The microstructure and optical properties of thin film after annealing at 700 °C in air were characterized by transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and spectrophotometer. It revealed that the particle shape, size, and distribution across the film were greatly changed before and after annealing. The surface plasmon resonance absorption and thermal stability of the film were found to be strongly dependent on the film thickness, which was believed to be associated with the evolution process of particle diffusion, agglomeration, and evaporation during annealing at high temperature. When the film thickness was smaller than 90 nm, the film SPR absorption can be attenuated until extinct with increasing annealing time due to the evaporation of Ag particles. While the film thickness was larger than 120 nm, the absorption can keep constant even after annealing for 64 h due to the agglomeration of Ag particles. On the base of film thickness results, the multilayer Al2O3:Ag solar selective thin films were prepared and the thermal stability test illustrated that the solar selectivity of multilayer films with absorbing layer thickness larger than 120 nm did not degrade after annealing at 500 °C for 70 h in air. It can be concluded that film thickness is an important factor to control the thermal stability of Al2O3:Ag thin films as high-temperature solar selective absorbers.  相似文献   

18.
The crystal structure and hysteretic magnetic properties of equiatomic single-crystal CoPt films applied on MgO substrates by magnetron sputtering, as well as modification of these properties by thermal annealing, are studied. Heat-treated films of thickness in the range 2<d≤16 nm exhibit perpendicular magnetic anisotropy. A correlation between the crystalline anisotropy constant of the CoPt films and the order parameter of the LI0 superstructure in these alloys is found. The effect of a single-crystalline MgO substrate on the structure and magnetic properties of equiatomic CoPt films is revealed.  相似文献   

19.
Absorption and luminescence properties of silver nanoclusters embedded in SiO2 matrixes were studied experimentally. Thin SiO2 films with different amount of silver were produced by co-deposition of Ag and SiO2 onto the silica substrates in vacuum. The thus obtained films possess three peaks in absorption spectra at 297, 329 and 401 nm and two peaks in luminescence spectra at about 500 and 650 nm. We ascribed these spectral features to silver nanoclusters of different sizes that present in the film. Thermal annealing transforms both absorption and emission spectra of the films. Lager clusters that are formed after annealing possess one absorption band at 350–450 nm and one luminescence band at 510 nm. The luminescence was observed only in samples with the silver content of less than 2.2%. Quenching of the luminescence in samples with higher concentration of silver is due to the presence of larger particles with plasmonic properties.  相似文献   

20.
ZnGa2O4 thin-film phosphors have been grown on Si(100), Al2O3(0001) and MgO(100) substrates using pulsed laser deposition. The structural characterization was carried out on a series of ZnGa2O4 films grown on various substrates under various substrate temperatures and oxygen pressures. The films grown on these substrates not only have different crystallinity and surface morphology, but also different Zn/Ga composition ratio. The crystallinity and photoluminescence (PL) of the ZnGa2O4 films are highly dependent on the deposition conditions, in particular the stoichiometry ratio of Zn/Ga and the kind of substrate. The variation of Zn/Ga in the films also depends on not only the oxygen pressure but also the substrate temperature during deposition. The PL properties of pulsed laser deposited ZnGa2O4 thin films have indicated that Al2O3(0001) and MgO(100) are promising substrates for the growth of high-quality ZnGa2O4 thin films and that the luminescence brightness depends on the substrate. The luminescence spectra show a broad band extending from 350 to 600 nm and peaking at 460 nm. Received: 11 July 2002 / Accepted: 31 July 2002 / Published online: 28 October 2002 RID="*" ID="*"Corresponding author. Fax: +82-51-6206356, E-mail: jhjeong@pknu.ac.kr  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号