首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The standard (p o=0.1 MPa) molar energies of combustion for the crystalline 1-benzyl-4-piperidinol and 4-piperidine-piperidine, and for the liquid 4-benzylpiperidine, were measured by static bomb calorimetry, in oxygen, at T=298.15 K. The standard molar enthalpies of sublimation or vaporization, at T=298.15 K, of these three compounds were determined by Calvet microcalorimetry. Those values were used to derive the standard molar enthalpies of formation, at T=298.15 K, in their condensed and gaseous phase, respectively.  相似文献   

2.
The energy of combustion of crystalline 3,4,5-trimethoxybenzoic acid in oxygen at T=298.15 K was determined to be -4795.9±1.3 kJ mol-1 using combustion calorimetry. The derived standard molar enthalpies of formation of 3,4,5-trimethoxybenzoic acid in crystalline and gaseous states at T=298.15 K, ΔfHm Θ (cr) and ΔfHm Θ (g), were -852.9±1.9 and -721.7±2.0 kJ mol-1, respectively. The reliability of the results obtained was commented upon and compared with literature values. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

3.
The present work is part of a broader research program on the energetics of formation of heterocycles, aiming the study of the enthalpic effects of the introduction of different substituents into heterocycles. In this work we present the results of the thermochemical research on sulphur heterocycles of the type substituted thiophenes with different kind of substituents, mainly alkyl, ester, acetyl, carboxamide, acetamide, carbonitrile and carboxaldehyde. The standard (p o=0.1 MPa) molar enthalpies of formation, in the condensed phase, at T=298.15 K, of a large number of substituted thiophenes, were derived from their standard massic energies of combustion, measured by rotating-bomb combustion calorimetry, while the standard molar enthalpies of vaporization or sublimation of those compounds were obtained either by high temperature Calvet Microcalorimetry, or by the temperature dependence of their vapour pressures determined by the Knudsen effusion technique. The standard molar enthalpies of formation, of the studied sulphur heterocycles in the gaseous phase, were then derived. The results are interpreted in terms of structural contributions to the energetics of the substituted thiophenes, the internal consistency of the results is discussed and, whenever appropriate and possible, empirical correlations are suggested for the estimation of standard molar enthalpies of formation, at T=298.15 K, of substituted thiophenes. A Table of enthalpic increments for different group substituents in positions 2 or 3 of the thiophene ring has been established.  相似文献   

4.
The standard (p° = 0.1MPa) molar enthalpies of formation for 2-, 3- and 4-cyanophenol in the gaseous phase were derived from the standard molar enthalpies of combustion in oxygen at T = 298.15 K, measured by static bomb combustion calorimetry, and the standard molar enthalpies of sublimation at 298.15 K, measured by Calvet microcalorimetry: 2-cyanophenol, (32.8 ± 2.1) kJ-mol–1; 3-cyanophenol, (37.8 ± 2.2) kJ-mol–1; 4-cyanophenol, (35.1 ± 2.5)-kJ-mol–1. Ab initio geometry optimizations of the three cyanophenols and respective phenoxyl radicals and phenoxide anions were performed using the 6-31G* basis sets. Single-point MP2 and DFT energy calculations allowed the estimation of the enthalpies of formation in the gaseous phase, the O—H bond dissociation energies, and the gas-phase acidities of the three cyanophenols. The theoretical results are generally in good agreement with the experimental findings.  相似文献   

5.
The standard (p° = 0.1 MPa) molar enthalpies of formation, in the crystalline phase, at T = 298.15 K, for 5-methyluracil, 6-methyluracil, and 5-nitrouracil were derived from the values of the standard massic energies of combustion measured by static bomb combustion calorimetry. The results obtained together with literature values of the enthalpies of sublimation yielded the standard molar enthalpies of formation, in gaseous phase, at T = 298.15 K. These values are discussed in the terms of structural enthalpic increments.  相似文献   

6.
The standard (p 0=0.1 MPa) molar enthalpy of formation, Δf H 0 m, for crystalline N-phenylphthalimide was derived from its standard molar enthalpy of combustion, in oxygen, at the temperature 298.15 K, measured by static bomb-combustion calorimetry, as –206.0±3.4 kJ mol–1. The standard molar enthalpy of sublimation, Δg cr H 0 m , at T=298.15 K, was derived, from high temperature Calvet microcalorimetry, as 121.3±1.0 kJ mol–1. The derived standard molar enthalpy of formation, in the gaseous state, is analysed in terms of enthalpic increments and interpreted in terms of molecular structure.  相似文献   

7.
Using our technique of combustion of small amount of a substance, we determined by calorimetry the standard molar enthalpy of formation in the condensed state and atT=298.15 K of the three isomers of bromo and iodobenzoic acids. Associating to these values their standard molar enthalpies of sublimation previously measured, it was possible to determine their standard molar enthalpies of formation in the gaseous state and atT=298.15 K. The experimental values of the thermodynamic properties f H m o (cr, 298.15 K), f H m o (cr, 298.15 K), sub H m o (298.15 K), and f H m o (g, 298.15 K) are given for the two series. From the experimental value of the standard molar enthalpy of atomization, it was possible to determine an enthalpy value for the Cb-Br and Cb-I bonds. The experimental and theoretical values of the resonance energy of bromo and iodobenzoic acids are compatible. The relative stability of some monosubstituted derivatives of benzoic acid studied in our laboratory is also discussed.Part I is concerned with Ref. 22 (for bromobenzoic acids) and with Ref. 23 (for iodobenzoic acids).  相似文献   

8.
This paper reports the values of the standard (p=0.1 MPa) molar enthalpy of formation in the condensed, at T=298.15 K, for 2-R-benzimidazoles (R=propyl, isopropyl), derived from, the respective enthalpies of combustion in oxygen, measured by static bomb combustion calorimetry and the standard molar enthalpies of sublimation, at T=298.15 K, obtained using Calvet microcalorimetry in the case of 2-isopropylbenzimidazole and, by the variation of vapour pressures, determined by the Knudsen effusion technique, with temperatures between (344 and 365) K for 2-propylbenzimidazole. Heat capacities, in the temperature ranges from T=268 K to near their respective melting temperatures, T=421 K for 2-propylbenzimidazole and T=464 K for 2-isopropylbenzimidazole, were measured with a differential scanning calorimeter. These values were used to derive the standard molar enthalpies of formation, of the two 2-benzimidazole derivatives, in gaseous phase.  相似文献   

9.
The standard (p = 0.1 MPa) molar enthalpies of formation of 2-, 3- and 4-cyanobenzoic acids were derived from their standard molar energies of combustion, in oxygen, at T = 298.15 K, measured by static bomb combustion calorimetry. The Calvet high temperature vacuum sublimation technique was used to measure the enthalpies of sublimation of 2- and 3-cyanobenzoic acids. The standard molar enthalpies of formation of the three compounds, in the gaseous phase, at T = 298.15 K, have been derived from the corresponding standard molar enthalpies of formation in the condensed phase and standard molar enthalpies for phase transition. The results obtained are −(150.7 ± 2.0) kJ · mol−1, −(153.6 ± 1.7) kJ · mol−1 and −(157.1 ± 1.4) kJ · mol−1 for 2-cyano, 3-cyano and 4-cyanobenzoic acids, respectively. Standard molar enthalpies of formation were also estimated by employing two different methodologies: one based on the Cox scheme and the other one based on several different computational approaches. The calculated values show a good agreement with the experimental values obtained in this work.  相似文献   

10.
The standard (p° = 0.1 MPa) molar enthalpies of formation, at T = 298.15 K, of 4-chloro-3-nitroaniline and 5-chloro-2-nitroaniline, in the condensed phase, were derived from their standard molar energies of combustion, in oxygen, to yield CO2(g), N2(g), and HCl · 600H2O(l), measured by rotating bomb combustion calorimetry. From the temperature dependence of the vapour pressures of these compounds, measured by the Knudsen effusion technique, their standard molar enthalpies of sublimation, at T = 298.15 K, were derived by means of the Clausius–Clapeyron equation. The Calvet microcalorimetry was also used to measure the standard molar enthalpies of sublimation of these compounds, at T = 298.15 K. The combination of the standard molar enthalpies of formation in the condensed phases and the standard molar enthalpies of sublimation yielded the standard molar enthalpies of formation in the gaseous phase at T = 298.15 K for each isomer. Further, the standard (p° = 0.1 MPa) molar enthalpies, entropies and Gibbs free energies of sublimation, at T = 298.15 K, were also derived.The standard molar enthalpies of formation, in the gaseous phase of all the chloronitroaniline isomers were also estimated by the Cox scheme and by the use of computational thermochemistry and compared with the available experimental values.  相似文献   

11.
The standard molar enthalpies of vaporization l g H m º of 2,5-dimethylfuran, 2-tert-butylfuran, 2,5-di-tert-butylfuran, cyclopentenyl methyl ether, cyclohexenyl methyl ether, and tert-amyl methyl ether were obtained from the temperature variation of the vapor pressure measured in a flow system. The standard (p° = 0.1 MPa) molar enthalpies of formation f H m º (1) at the temperature T = 298.15 K were measured using combustion calorimetry for 2,5-dimethylfuran, 2-tert-butylfuran, and 2,5-di-tert-butylfuran. From the derived standard molar enthalpies of formation for gaseous compounds, ring correction terms and non-nearest neighbor interactions useful in the application of the Benson group additivity scheme were calculated.  相似文献   

12.
The standard (p o=0.1 MPa) molar enthalpies of combustion atT=298.15 K were measured by static bomb combustion calorimetry for liquidN,N-diethylaniline,N,N-dimethyl-m-toluidine,N,N-dimethyl-p-toluidine, andN-ethyl-m-toluidine. Vaporization enthalpies forN,N-dimethyl-m-toluidine andN-ethyl-m-toluidine were determined by correlation gas chromatography. Derived standard molar values of f H m o (g) at 298.15 K forN,N-diethylaniline (62.1±7.6);N,N-dimethyl-m-toluidine (72.6±7.3),N,N-dimentyl-p-toluidine (68.9±7.4),N-ethyl-m-toluidine (30.5±3.8 kJ· mol–1) were obtained.  相似文献   

13.
The present work reports the experimental determination of the standard (p o = 0.1 MPa) molar enthalpies of formation in the condensed and gaseous phases, at T = 298.15 K, of 5- and 6-nitroindazole. These results were derived from the measurements of the standard molar energies of combustion, using a static bomb calorimeter and from the standard molar enthalpies of sublimation derived by the application of Clausius–Clapeyron to the temperature dependence of the vapour pressures measured by the Knudsen effusion technique. The results are interpreted in terms of the energetic contributions of the nitro groups in the different positions of the aromatic ring.  相似文献   

14.
The standard (p o = 0.1 MPa) molar enthalpies of formation \Updelta\textf H\textm\texto ( \textl), {{\Updelta}}_{\text{f}} H_{\text{m}}^{\text{o}} ( {\text{l),}} of the liquid 2-methylfuran, 5-methyl-2-acetylfuran and 5-methyl-2-furaldehyde were derived from the standard molar energies of combustion, in oxygen, at T = 298.15 K, measured by static bomb combustion calorimetry. The Calvet high temperature vacuum sublimation technique was used to measure the enthalpies of vaporization of the three compounds. The standard (p o = 0.1 MPa) molar enthalpies of formation of the compounds, in the gaseous phase, at T = 298.15 K have been derived from the corresponding standard molar enthalpies of formation in the liquid phase and the standard molar enthalpies of vaporization. The results obtained were −(76.4 ± 1.2), −(253.9 ± 1.9), and −(196.8 ± 1.8) kJ mol−1, for 2-methylfuran, 5-methyl-2-acetylfuran, and 5-methyl-2-furaldehyde, respectively.  相似文献   

15.
The standard ( = 0.1 MPa) energies of combustion in oxygen, at T = 298.15 K, for the solid compounds 2-methylpyridine-N-oxide (2-MePyNO), 3-methylpyridine-N-oxide (3-MePyNO) and 3,5-dimethylpyridine-N-oxide (3,5-DMePyNO) were measured by static-bomb calorimetry, from which the respective standard molar enthalpies of formation in the condensed phase were derived. The standard molar enthalpies of sublimation, at the same temperature, were measured by Calvet microcalorimetry. From the standard molar enthalpy of formation in gaseous phase, the molar dissociation enthalpies of the N–O bonds were derived, and compared with values of the dissociation enthalpies of other N–O bonds available for other pyridine-N-oxide derivatives.  相似文献   

16.
The present work reports an experimental thermochemical study supported by state of the art calculations of two heterocyclic compounds containing oxygen in the ring: xanthone and tetrahydro-γ-pyrone. The standard (po = 0.1 MPa) molar enthalpies of formation in the condensed phase, at T = 298.15 K, were derived from the measurements of the standard molar energies of combustion in oxygen atmosphere, using a static bomb calorimeter. The standard molar enthalpies of sublimation or vaporization, at T = 298.15 K, of the title compounds were obtained from Calvet microcalorimetry measurements. These values were used to derive the standard enthalpies of formation of the compounds in the gas-phase at the same temperature, which were compared with estimated data from G3(MP2)//B3LYP computations.  相似文献   

17.
The heat capacities (C p,m) of 2-amino-5-methylpyridine (AMP) were measured by a precision automated adiabatic calorimeter over the temperature range from 80 to 398 K. A solid-liquid phase transition was found in the range from 336 to 351 K with the peak heat capacity at 350.426 K. The melting temperature (T m), the molar enthalpy (Δfus H m0), and the molar entropy (Δfus S m0) of fusion were determined to be 350.431±0.018 K, 18.108 kJ mol−1 and 51.676 J K−1 mol−1, respectively. The mole fraction purity of the sample used was determined to be 0.99734 through the Van’t Hoff equation. The thermodynamic functions (H T-H 298.15 and S T-S 298.15) were calculated. The molar energy of combustion and the standard molar enthalpy of combustion were determined, ΔU c(C6H8N2,cr)= −3500.15±1.51 kJ mol−1 and Δc H m0 (C6H8N2,cr)= −3502.64±1.51 kJ mol−1, by means of a precision oxygen-bomb combustion calorimeter at T=298.15 K. The standard molar enthalpy of formation of the crystalline compound was derived, Δr H m0 (C6H8N2,cr)= −1.74±0.57 kJ mol−1.  相似文献   

18.
The standard molar enthalpies of formation f H m ° (l) at the temperature T = 298.15 K were determined using combustion calorimetry for N-methylpiperidine (A), N-ethylpiperidine (B), N-propylpiperidine (C), N-butylpiperidine (D), N-cyclopentylpiperidine (E), N-cyclohexylpiperidine (F), and N-phenylpiperidine (G). The standard molar enthalpies of vaporization l g H m ° of these compounds were obtained from the temperature variation of the vapor pressure measured in a flow system. From these data the following standard molar enthalpies of formation in gaseous phase f H m ° (g) were derived for: A –(61.39 ± 0.88); B –(88.1 ± 1.3); C –(105.81 ± 0.66); D –(126.2 ± 1.3); E ( –88.21 ± 0.75); F –(135.21 ± 0.94); G (70.3 ± 1.4) kJ · mol–1. They are used to determine the strain enthalpies of the cyclic amines A–G. The N-alkylated piperidine rings have been found to be about strainless.  相似文献   

19.
Thermochemical studies on the thioproline   总被引:3,自引:0,他引:3  
The combustion energy of thioproline was determined by the precision rotating-bomb calorimeter at 298.15 K to be Δc U= –2469.30±1.44 kJ mol–1. From the results and other auxiliary quantities, the standard molar enthalpy of combustion and the standard molar enthalpy of formation of thioproline were calculated to be Δc H m θC4H7NO2S, (s), 298.15 K= –2469.92±1.44 kJ mol–1 and Δf H m θC4H7NO2S, (s), 298.15K= –401.33±1.54 kJ mol–1.  相似文献   

20.
The standard (p° = 0.1 MPa) molar enthalpies of formation, at T = 298.15 K, in the gaseous phase, of three piperidinecarboxamide derivatives, namely 1-, 3- and 4-piperidinecarboxamide, were determined from their enthalpies of combustion and sublimation, obtained by static bomb calorimetry in oxygen and by Calvet microcalorimenty, respectively.The final results are analysed and discussed in terms of molecular structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号