首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We employ recent flexible ab initio potential energy and dipole surfaces [Y. Wang, X. Huang, B. C. Shepler, B. J. Braams, and J. M. Bowman, J. Chem. Phys. 134, 094509 (2011)] to the calculation of IR spectra of the intramolecular modes of water clusters. We use a quantum approach that begins with a partitioned normal-mode analysis of perturbed monomers, and then obtains solutions of the corresponding Schro?dinger equations for the fully coupled intramolecular modes of each perturbed monomer. For water clusters, these modes are the two stretches and the bend. This approach is tested against benchmark calculations for the water dimer and trimer and then applied to the water clusters (H(2)O)(n) for n = 6-10 and n = 20. Comparisons of the spectra are made with previous ab initio harmonic and empirical potential calculations and available experiments.  相似文献   

2.
A valence-only (V) dipole moment surface (DMS) has been computed for water at the internally contracted multireference configuration interaction level using the extended atom-centered correlation-consistent Gaussian basis set aug-cc-pV6Z. Small corrections to these dipole values, resulting from core correlation (C) and relativistic (R) effects, have also been computed and added to the V surface. The resulting DMS surface is hence called CVR. Interestingly, the C and R corrections cancel out each other almost completely over the whole grid of points investigated. The ground-state CVR dipole of H(2) (16)O is 1.8676 D. This value compares well with the best ab initio one determined in this study, 1.8539+/-0.0013 D, which in turn agrees well with the measured ground-state dipole moment of water, 1.8546(6) D. Line intensities computed with the help of the CVR DMS shows that the present DMS is highly similar to though slightly more accurate than the best previous DMS of water determined by Schwenke and Partridge [J. Chem. Phys. 113, 16 (2000)]. The influence of the precision of the rovibrational wave functions computed using different potential energy surfaces (PESs) has been investigated and proved to be small, due mostly to the small discrepancies between the best ab initio and empirical PESs of water. Several different measures to test the DMS of water are advanced. The seemingly most sensitive measure is the comparison between the ab initio line intensities and those measured by ultralong pathlength methods which are sensitive to very weak transitions.  相似文献   

3.
Full-dimensional ab initio potential energy surface (PES) and dipole moment surface (DMS) are reported for H(5)O(2) (+). Tens of thousands of coupled-cluster [CCSD(T)] and second-order Moller-Plesset (MP2) calculations of electronic energies, using aug-cc-pVTZ basis, were done. The energies were fit very precisely in terms of all the internuclear distances, using standard least-square procedures, however, with a fitting basis that satisfies permutational symmetry with respect to like atoms. The H(5)O(2) (+) PES is a fit to 48 189 CCSD(T) energies, containing 7962 polynomial coefficients. The PES has a rms fitting error of 34.9 cm(-1) for the entire data set up to 110 000 cm(-1). This surface can describe various internal floppy motions, including the H atom exchanges, monomer inversions, and monomer torsions. First- and higher-order saddle points have been located on the surface and compared with available previous theoretical work. In addition, the PES dissociates correctly (and symmetrically) to H(2)O+H(3)O(+), with D(e)=11 923.8 cm(-1). Geometrical and vibrational properties of the monomer fragments are presented. The corresponding global DMS fit (MP2 based) involves 3844 polynomial coefficients and also dissociates correctly.  相似文献   

4.
The high accuracy ab initio adiabatic potential energy surfaces (PESs) of the ground electronic state of the water molecule, determined originally by Polyansky et al. [Science 299, 539 (2003)] and called CVRQD, are extended and carefully characterized and analyzed. The CVRQD potential energy surfaces are obtained from extrapolation to the complete basis set of nearly full configuration interaction valence-only electronic structure computations, augmented by core, relativistic, quantum electrodynamics, and diagonal Born-Oppenheimer corrections. We also report ab initio calculations of several quantities characterizing the CVRQD PESs, including equilibrium and vibrationally averaged (0 K) structures, harmonic and anharmonic force fields, harmonic vibrational frequencies, vibrational fundamentals, and zero-point energies. They can be considered as the best ab initio estimates of these quantities available today. Results of first-principles computations on the rovibrational energy levels of several isotopologues of the water molecule are also presented, based on the CVRQD PESs and the use of variational nuclear motion calculations employing an exact kinetic energy operator given in orthogonal internal coordinates. The variational nuclear motion calculations also include a simplified treatment of nonadiabatic effects. This sophisticated procedure to compute rovibrational energy levels reproduces all the known rovibrational levels of the water isotopologues considered, H(2) (16)O, H(2) (17)O, H(2) (18)O, and D(2) (16)O, to better than 1 cm(-1) on average. Finally, prospects for further improvement of the ground-state adiabatic ab initio PESs of water are discussed.  相似文献   

5.
A highly accurate, global dipole moment surface (DMS) is calculated for the water molecule using ab initio quantum chemistry methods. The new surface is named LTP2011 and is based on all-electron, internally contracted multireference configuration interaction, including size-extensivity corrections in the aug-cc-pCV6Z basis set. Dipoles are computed as energy derivatives and small corrections due to relativistic effects included. The LTP2011 DMS uses an appropriate functional form that guarantees qualitatively correct behaviour even for most high energies configuration (up to about 60,000 cm(-1)), including, in particular, along the water dissociation channel. Comparisons with high precision experimental data show agreement within 1% for medium-strength lines. The new DMS and all the ab initio data are made available in the supplementary material.  相似文献   

6.
Accurate infrared spectra of the two hydroxycarbene isomers are computed by diagonalizing the Watson Hamiltonian including up to four mode couplings using full dimensional potential energy and dipole moment surfaces calculated at the CCSD(T)/cc-pVTZ (frozen core) and CCSD6-311G(**) (all electrons correlated) levels, respectively. Anharmonic corrections are found to be very important for these elusive higher-energy isomers of formaldehyde. Both the energy levels and intensities of stretching fundamentals and all overtone transitions are strongly affected by anharmonic couplings between the modes. The results for trans-HCOHHCOD are in excellent agreement with the recently reported IR spectra, which validates our predictions for the cis-isomers.  相似文献   

7.
Eigenvalues corresponding to the three torsional degrees of freedom were calculated for the water trimer and its deuterated isotopomer in four sets of calculations involving different potential energy surfaces. The four potential surfaces were developed in this work by reparametrization of the CKL function against four sets of ab initio energies calculated with and without counterpoise correction. Transition frequencies corresponding to the low-frequency torsional motions of the trimer were calculated and then compared with those found from experiment to assess the accuracy of each potential energy surface. Although reparametrization of the CKL function to a set of counterpoise-corrected energies yielded transition energies that are in qualitative agreement with those from experiment, reparametrization to another set of counterpoise-corrected energies resulted in highly inaccurate values of the transition energy. As a consequence, our results demonstrate that caution must be exercised in the implementation of the counterpoise method as it does not always lead to more accurate ab initio calculations. © 1998 John Wiley & Sons, Inc. Int J Quant Chem 68: 233–252, 1998  相似文献   

8.
A full-dimensional ab initio potential energy surface (PES) and dipole moment surface (DMS) are reported for the water dimer, (H2O)2. The CCSD(T)-PES is a very precise fit to 19,805 ab initio energies obtained with the coupled-cluster (CCSD(T)) method, using an aug-cc-pVTZ basis. The standard counterpoise correction was applied to approximately eliminate basis set superposition errors. The fit is based on an approach that incorporates the permutational symmetry of identical atoms [Huang, X.; Braams, B.; Bowman, J. M. J. Chem.Phys. 2005, 122, 044308]. The DMS is a fit to the dipole moment obtained with M?ller-Plesset (MP2) theory, using an aug-cc-pVTZ basis. The PES has an RMS fitting error of 31 cm(-1) for energies below 20,000 cm(-1), relative to the global minimum. This surface can describe various internal floppy motions, including various monomer inversions, and isomerization pathways. Ten characteristic stationary points have been located on the surface, four of which are transition structures and the rest are higher order saddle points. Their geometrical and vibrational properties are presented and compared with available previous theoretical work. The CCSD(T)-PES and MP2-DMS dissociate correctly (and symmetrically) to two H2O monomers, with D(e) = 1665.7 cm(-1) (19.93 kJ/mol). Accurate quantum calculations of the zero-point energy of the dimer (using diffusion Monte Carlo) and the monomers (using a vibrational configuration interaction approach) are reported, and these together with D(e) give a value of D0 of 1042 cm(-1) (12.44 kJ/mol). A best estimated value is 1130 cm(-1) (13.5 kJ/mol).  相似文献   

9.
Recent experimental and theoretical cluster studies are reviewed. Areas of current and developing interest in theoretical and computational chemistry are identified. Some promising methods applied to metal clusters, main group clusters, molecular clusters, spectroscopy, and models of cluster-molecule reactions are indicated. Results of calculations on small hydrogenated lithium clusters and hydrated sodium clusters are discussed in some detail.  相似文献   

10.
High-level ab initio calculations employing the multireference configuration interaction and coupled clusters methods with a correlation-consistent sequence of basis sets have been used to obtain accurate potential energy curves for the complex of the sodium cation with the iodine atom. Potential curves for the first two electronic Lambda-S states have very different characters: the potential for the 2pi state has a well depth of approximately 10 kcal/mol, while the 2sigma state is essentially unbound. This difference is rationalized in terms of the anisotropic interaction of the quadrupole moment of the iodine atom with the sodium cation, which is stabilizing in the case of the 2pi state and destabilizing in the case of the 2sigma state. The effects of spin-orbit coupling have been accounted for with both ab initio and semiempirical approaches, which have been found to give practically the same results. Inclusion of spin-orbit interactions does not affect the X(omega = 32) ground state, which retains its 2pi character, but it results in two omega = 12 spin-orbit states, with mixed 2sigma and 2pi characters and binding energies roughly half of that of the ground spin-orbit state. Complete basis set (CBS) extrapolations of potential curves, binding energies, and equilibrium geometries were also performed, and used to calculate a number of rovibronic parameters for the Na+...I* complex and to parameterize model potentials. The final CBS-extrapolated and zero-point vibrational energy-corrected binding energy is 10.2 kcal/mol. Applications of the present results for simulations of NaI photodissociation femtosecond spectroscopy are discussed.  相似文献   

11.
The multireference spin-orbit (SO) configuration interaction (CI) method in its Lambda-S contracted SO-CI version is employed to calculate two-dimensional potential energy surfaces for the ground and low-lying excited states of CH3I relevant to the photodissociation process in its A absorption band. The computed equilibrium geometry for the X A1 ground state, as well as vibrational frequencies for the nu2 umbrella and nu3 symmetric stretch modes, are found to be in good agreement with available experimental data. The 3Q0+ state converging to the excited I(2P1/2o) limit is found to possess a shallow minimum of 850 cm(-1) strongly shifted to larger internuclear distances (RC-I approximately 6.5a0) relative to the ground state. This makes a commonly employed single-exponent approximation for analysis of the CH3I fragmentation dynamics unsuitable. The 4E(3A1) state dissociating to the same atomic limit is calculated to lie too high in the Franck-Condon region to have any significant impact on the A-band absorption. The computed vertical excitation energies for the 3Q1, 3Q0+, and 1Q states indicate that the A-band spectrum must lie approximately between 33,000 and 44,300 cm(-1), i.e., between 225 and 300 nm. This result is in very good agreement with the experimental findings. The lowest Rydberg states are computed to lie at >or=49,000 cm(-1) and correspond to the ...a(1)2n3a1(6sI) leading configuration. They are responsible for the vacuum ultraviolet absorption lines found experimentally beyond the A-band spectrum at 201.1 nm (49,722 cm(-1)) and higher.  相似文献   

12.
13.
We report a full dimensional ab initio-based global potential energy surface (PES) and dipole moment surface (DMS) for Cl(-)H(2)O. Both surfaces are symmetric with respect to interchange of the H atoms. The PES is a fit to thousands of electronic energies calculated using the coupled-cluster method (CCSD(T)) with a moderately large basis (aug-cc-pVTZ). The infrared spectrum and vibrational dynamics are reported and compared to experiment. These results are analyzed by examination of wave function and the dipole surface.  相似文献   

14.
We report a full dimensional, ab initio-based global potential energy surface (PES) and dipole moment surface for Cl-H2O. Both surfaces are symmetric with respect to interchange of the H atoms. The PES is a fit to thousands of electronic energies calculated using the coupled-cluster method [CCSD(T)] with a moderately large basis (aug-cc-pVTZ). Vibrational energies and wave functions are accurately obtained using MULTIMODE. The wave function and dipole moment surface are used to calculate and analyze the pure infrared spectrum at 0 K which is compared with experiment. Vibrational energies and the infrared spectra for DOD and HOD/DOH are also presented.  相似文献   

15.
Dipole moment derivatives determined by ab initio and CNDO/2 calculations are compared with the corresponding data obtained from infrared intensities. For ethane, ethylene and formaldehyde, the recent results of quadratic force field calculations have been used to calculate experimental derivatives; for the latter two molecules, the individual intensities of certain overlapping bands were determined from the results of rovibrational analysis. The experimental dipole moment derivative with respect to the rocking symmetry coordinate, S10, of ethylene has been found to be 0.03 D, as opposed to the value of ca. 0.4 D reported previously. CNDO results agree both in sign and magnitude with ab initio dipole moment derivatives.  相似文献   

16.
Technical details of a new global mapping technique for finding equilibrium (EQ) and transition structures (TS) on potential energy surfaces (PES), the scaled hypersphere search (SHS) method (Ohno, K.; Maeda, S. Chem. Phys. Lett. 2004, 384, 277), are presented. On the basis of a simple principle that reaction pathways are found as anharmonic downward distortions of PES around an EQ point, the reaction pathways can be obtained as energy minima on the scaled hypersphere surface, which would have a constant energy when the potentials are harmonic. Connections of SHS paths between each EQ are very similar to corresponding intrinsic reaction coordinate (IRC) connections. The energy maximum along the SHS path reaches a region in close proximity to the TS of the reaction pathway, and the subsequent geometry optimization from the SHS maximum structure easily converges to the TS. The SHS method, using the one-after-another algorithm connecting EQ and TS, considerably reduces the multidimensional space to be searched to certain limited regions around the pathways connecting each EQ with the neighboring TS. Applications of the SHS method have been made to ab initio surfaces of formaldehyde and propyne molecules to obtain systematically five EQ and nine TS for formaldehyde and seven EQ and 32 TS for propyne.  相似文献   

17.
The energetics of proton transfer in liquid water investigated by using ab initio calculation. The molecular electronic interaction of hydrated proton clusters in classified into many-body interaction elements by a new energy decomposition method. It is found that up to three-body molecular interaction is essential to describe the potential energy surface. The three-body effect mainly arises from the (non-classical) charge transfer and strongly depends on their configuration. Higher than three-body effects are small enough to be neglected. To simulate the liquid state reactions, two cluster models including all water molecules up to the second shell in the proton transfer reactions are employed. It is shown that these proton transfer reactions only involve small potential energy barriers of a few kcal/mol or less when structural rearrangement of the solvent is induced along the proton movement.  相似文献   

18.
The potential energy surfaces of the neutral and anionic thymine-water complexes are investigated using high-level ab initio calculations. Both dipole-bound (DB) and valence-bound (VB) anionic forms are considered. Four minima and three first-order stationary points are located, and binding energies are computed. All minima, for both anions, are found to be vertically and adiabatically stable. The binding energies are much higher for valence-bound than for dipole-bound anions. Adiabatic electron affinities are in the 66-287 meV range for VB anions and the 4-60 meV range for DB anions, and vertical detachment energies are in the 698-977 meV and 10-70 meV range for VB and DB anions, respectively. For cases where literature data are available, the computed values are in good agreement with previous experimental and theoretical studies. It is observed that electron attachment modifies the shape of the potential energy surfaces of the systems, especially for the valence-bound anions. Moreover, for both anions the size of the energy barrier between the two lowest energy minima is strongly reduced, rendering the coexistence of different structures more probable.  相似文献   

19.
We test two new potentials for water, fit to vibration-rotation tunneling (VRT) data by employing diffusion quantum Monte Carlo simulations to calculate the vibrational ground-state properties of water clusters. These potentials, VRT(ASP-W)II and VRT(ASP-W)III, are fits of the highly detailed ASP-W (anisotropic site potential with Woermer dispersion) ab initio potential to (D(2)O)(2) microwave and far-infrared data, and along with the SAPT5s (five-site symmetry adapted perturbation theory) potentials, are the most accurate water dimer potential surfaces in the literature. The results from VRT(ASP-W)II and III are compared to those from the original ASP-W potential, the SAPT5s family of potentials, and several bulk water potentials. Only VRT(ASP-W)III and the spectroscopically "tuned" SAPT5st (with N-body induction included) accurately reproduce the vibrational ground-state structures of water clusters up to the hexamer. Finally, the importance of many-body induction and three-body dispersion are examined, and it is shown that the latter can have significant effects on water cluster properties despite its small magnitude.  相似文献   

20.
An analytical anharmonic six-dimensional three-sheeted potential energy surface for the ground and first excited states of the ammonia cation has been developed which is tailored to model the ultrafast photoinduced dynamics. Selected ab initio cuts, obtained by multireference configuration interaction calculations, have been used to determine the parameters of a diabatic representation for this Jahn-Teller and pseudo-Jahn-Teller system. The model includes higher-order coupling terms both for the Jahn-Teller and for the pseudo-Jahn-Teller matrix elements. The relaxation to the ground state is possible via dynamical pseudo-Jahn-Teller couplings involving the asymmetric bending and stretching coordinates. The photoelectron spectrum of NH3 and the internal conversion dynamics of NH3+ have been determined by wave packet propagation calculations employing the multiconfigurational time-dependent Hartree method. Three different time scales are found in the dynamics calculations for the second absorption band. The ultrafast Jahn-Teller dynamics of the two excited states occurs on a 5 fs time scale. The major part of the internal conversion to the ground state takes place within a short time scale of 20 fs. This fast internal conversion is, however, incomplete and the remaining excited state population does not decay completely even within 100 fs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号