首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
2-(Pentafluorophenyl)-tetrafluoro-1,3,2-benzodioxaborole was reported as a bifunctional electrolyte additive for lithium-ion batteries. It was found that the reported additive had a redox potential of 4.43 V vs. Li+/Li with a reversible oxidation/reduction reaction. Therefore, it is a promising redox shuttle for overcharge protection of most positive electrode materials for current lithium-ion-battery technology. At the same time, the boron center of this additive is a strong Lewis acid and can act as an anion receptor to dissolve LiF generated during the operation of lithium-ion batteries. The possibility of using the novel additive as both the redox shuttle and the anion receptor was discussed.  相似文献   

2.
Wang  Ailian  Xu  Hao  Zhou  Qian  Liu  Xu  Li  Zhengyao  Gao  Rui  Liu  Xiangfeng  Zhang  Liaoyun 《Journal of Solid State Electrochemistry》2017,21(8):2355-2364
Journal of Solid State Electrochemistry - A new composite polymer electrolyte membrane composed of hyperbranched star polymers (HBPS-(PMMA-b-PPEGMA)30 (the hyperbranched star polymer with...  相似文献   

3.
Plasticized polymer electrolytes were prepared using poly(ethylene oxide)(PEO)/poly(vinylidene fluoridehexafluoro propylene)(PVd F-HFP) with lithium perchlorate(Li Cl O4) and different plasticizers. XRD and FTIR spectroscopic techniques were used to characterize the structure and the complexation of plasticizer with the host polymer matrix. The role of interaction between polymer hosts and plasticizer on conductivity is discussed using the results of alternating current(a.c.) impedance studies. TG-DTA and SEM were used for thermal and physical characterizations. Maximum ionic conductivity(3.26 × 10~(-4) S·cm~(-1)) has been observed for ethylene carbonate(EC)-based polymer electrolytes. Electrochemical performance of the plasticized polymer electrolyte is evaluated in LiFePO_4/plasticized polymer electrolytes(PPEs)/Li coin cell. Good performance with low capacity fading on charge discharge cycling is demonstrated.  相似文献   

4.
通过改性由酸蚀二维蛭石制备的二维二氧化硅,得到带正电荷的二维介孔二氧化硅(PSN+)纳米片,并将PSN+用作聚环氧乙烷(PEO)基固体聚合物电解质(SPEs)的填料。由于PSN+具有丰富的正电荷,PSN+与锂盐解离的阴离子能够有效结合,从而促进锂离子的运输,获得较好的锂离子转移数。在50℃时,基于PSN+的SPEs表现出较高的离子电导率(7.5×10-5 S·cm-1),锂离子迁移数为0.30,稳定电压窗为4.41 V。因此,组装后的LiFePO4锂电池在50℃、0.2C下具有优异的初始放电比容量(155.7 mAh·g-1),在循环100次后容量保持率为97.1%。  相似文献   

5.
6.
通过改性由酸蚀二维蛭石制备的二维二氧化硅,得到带正电荷的二维介孔二氧化硅(PSN+)纳米片,并将PSN+用作聚环氧乙烷(PEO)基固体聚合物电解质(SPEs)的填料。由于PSN+具有丰富的正电荷,PSN+与锂盐解离的阴离子能够有效结合,从而促进锂离子的运输,获得较好的锂离子转移数。在50 ℃时,基于PSN+的SPEs表现出较高的离子电导率(7.5×10-5 S·cm-1),锂离子迁移数为0.30,稳定电压窗为4.41 V。因此,组装后的LiFePO4锂电池在50 ℃、0.2C下具有优异的初始放电比容量(155.7 mAh·g-1),在循环100次后容量保持率为97.1%。  相似文献   

7.
Micro-batteries were fabricated by using BAB block copolymer as dry polymer electrolyte, which consisted of polyethylene oxide and polystyrene and had relatively high ionic conductivity at room temperature. The micro-batteries were fabricated by a sol–gel method combined with micro-injection system. Two types of micro-battery were fabricated. One consists of a single cell and another of 3-cells connected in series. LiMn2O4 and Li4/3Ti5/3O4 were used as active materials in positive and negative electrode, respectively. The micro-array batteries were operated at room temperature without any plasticizer in the polymer electrolyte. The operation voltages were 2.45 V and 7.40 V for a single cell and 3-cell array, respectively. The discharge capacities estimated from cyclic voltammetry measurements were 245 nA h for a single cell and 12.1 nA h for a 3-cell array, which corresponded to the energy densities of 8.48 μW h cm−2 and 4.54 μW h cm−2, respectively.  相似文献   

8.
A disiloxane-functionalized ionic liquid based on a phosphonium cation and a bis(trifluoromethylsulfonyl)imide (TFSI) anion was synthesized and characterized. This new ionic liquid electrolyte showed good stability with a lithium transition metal oxide cathode and a graphite anode in lithium ion cells.  相似文献   

9.
Ethylene carbonate(EC) is susceptible to the aggressive chemistry of nickel-rich cathodes, making it undesirable for high-voltage lithium-ion batteries(LIBs). The arbitrary elimination of EC leads to better oxidative tolerance but always incurs interfacial degradation and electrolyte decomposition. Herein, an EC-free electrolyte is deliberately developed based on gradient solvation by pairing solvation-protection agent(1,3,5-trifluorobenzene, F3B) with propylene carbonate(PC)/methyl e...  相似文献   

10.
11.
Nonflammable electrolytes are critical for the safe operation of high-voltage lithium-ion batteries (LIBs). Although organic phosphates are effective flame retardants, their poor electrochemical stability with a graphite (Gr) anode and Ni-rich cathodes would lead to the deterioration of electrode materials and fast capacity decay. Herein, we develop a safe and high-performance electrolyte formulation for high-voltage (4.6 V-class) LIBs using flame-retarding ethoxy(pentafluoro) cyclotriphosphazene (PFPN) as a non-solvating diluent for the high-concentration carbonate–ether hybrid electrolyte. In contrast to conventional nonflammable additives with restricted dosage, the high level of PFPN (69% mass ratio in our electrolyte design) could significantly increase the electrolyte flash point and protect the favored anion-rich inner solvation sheath because of its non-solvating feature, thus preventing solvent co-intercalation and structural damage to the Gr anode. The nonflammable electrolyte could also form a stable LiF-rich cathode electrolyte interphase (CEI), which enables superior electrochemical performances of Gr‖LiNi0.8Mn0.1Co0.1O2 (NMC811) full cells at high voltages (∼82.0% capacity retention after 1000 cycles at 4.5 V; 89.8% after 300 cycles at 4.6 V) and high temperatures (50 °C). This work sheds light on the electrolyte design and interphase engineering for developing practical safe high-energy-density LIBs.

This paper develops a high-safety and high-performance electrolyte with a carbonate–ether hybrid solvent and a highly fluorinated phosphazene-based flame-retarding diluent.  相似文献   

12.
High energy density lithium-ion batteries using Ni-rich cathode(such as LiNi0.6Co0.2Mn0.2O2) suffer from severe capacity decay.P-toluenesulfonyl fluoride(pTSF) has been investigated as a novel film-forming electrolyte additive to enhance the cycling performances of graphite/LiNi0.6Co0.2Mn0.2O2 pouch cell.In comparison with the baseline electrolyte,a small dose of pTSF can significantly improve the cyclic stability of the cell.Theoretical calculations together with experimental results indicate that pTSF would be oxidized and reduced to construct protective interphase film on the surfaces of LiNi0.6Co0.2Mn0.2O2 cathode and graphite anode,respectively.These S-containing surface films derived from pTSF effectively mitigate the decomposition of electrolyte,reduce the interphasial impedance,as well as prevent the dissolution of transition metal ions from Ni-rich cathode upon cycling at high voltage.This finding is beneficial for the practical application of high energy density graphite/LiNi0.6Co0.2Mn0.2O2 cells.  相似文献   

13.
A sensitive and accurate method based on ion chromatography was established for determination of five lithium salts in lithium-ion batteries electrolytes. Chromatographic analyses were carried out on an anion exchange column at flow rate of 1 m L/min. Under the optimal conditions, five target anions(BF_4~-,PF_6~-, TFSI~-, BOB~-and FSI~-) exhibited satisfactory linearity with a correlation coefficient of 0.9996. The relative standard derivations of the target anions were less than less than 0.94%(n = 7). The limits of detections were in the range of 0.068–0.29 mg/L with average spiked recoveries ranging from 96.8% to 105.1%.  相似文献   

14.
锂离子电池(lithiumionbatteries,LIBs)在储能领域已取得了巨大的成功.然而,商用LIBs含有高挥发性易燃有机电解液,使其存在严重的安全隐患.固态聚合物电解质具有解决相应安全性问题的潜力,有望成为下一代高安全性全固态LIBs的电解质材料.然而,固态聚合物电解质存在离子电导率不高等问题,限制了其在固态LIBs中的实际应用.研究者们为了提高该类电解质的离子电导率、锂离子迁移数等综合电化学性能,已在寻找新锂盐、对聚合物进行改性以及向聚合物电解质中添加填料等方面进行了较多的研究.本文简要概述了固态聚合物电解质的锂离子传导机理以及在提高固态聚合物电解质综合电化学性能方面的研究进展.  相似文献   

15.
江清柏  李胜良  汤旺  梁波 《化学通报》2014,77(9):893-893
聚合物锂离子电池作为储能装置在电子产品中具有广泛的应用前景。电极/聚合物电解质(E/P)界面相容性是影响聚合物锂离子电池电导率、安全性、机械性能的重要影响因素之一。研究E/P界面的电化学反应及形成机理,是解决相容性问题的关键。本文综述了近年来有关聚合物锂离子电池E/P界面相容性及相关研究技术的进展,并对聚合物锂离子电池界面相容性的相关研究进行了展望。  相似文献   

16.
Yuan  Ge  Guo  Haijun  Bo  Li  Wang  Mengkun  Zhang  Hairong  Chen  Xinde 《Journal of Solid State Electrochemistry》2023,27(2):455-465
Journal of Solid State Electrochemistry - The composite membrane (PDFP-POPM) based on the blending of poly(vinylidene fluoride-co-hexafluoropropylene) (PDFP) and POPM (the copolymer of organic...  相似文献   

17.
A novel polymeric electrolyte based on a self-assembled copolymer moiety has been prepared by a simple method of photo-induced radical polymerization of a mixture consisting of stearylmethacrylate (SMA) and poly(ethylene glycol)-monomethacrylate (PEM) that dissolves LiBF4 as the electrolytic salt. The SMA moiety work as mechanically stable backbone and the PEM unit dissolving the salts serves as ion-conducting path in the polymeric composite. Solid-state NMR measurements indicated that the resulting polymer composite consists of PEM-rich and SMA-rich phases, each of which exists within several nanometers apart. The ionic conductivity of the polymer electrolyte with the composition of PEM/SMA = 7/3 (by mass ratio) was 2.8 × 10?5 S cm?1 at 50 °C, which was significantly higher than that of the polymer electrolyte based on cross-linked PEM copolymer without SMA.  相似文献   

18.
Journal of Solid State Electrochemistry - In lithium-ion batteries, the volume change of anode materials will result in fracture of solid electrolyte interphase (SEI) during continuous lithiation...  相似文献   

19.
Poly(ethylene) oxide(PEO)-based electrolytes have been widely studied for solid-state lithium batteries while their ionic conductivity and lithium-ion transference number still need to be further improved.Herein, using the combined experimental and theoretical approach, we demonstrate a novel, solidstate PEO-deep eutectic solvent(DES) electrolyte for the first time. We found that the in situ formation of DES can reduce the crystallinity of PEO matrix and more Li+ions can move freely owing to the...  相似文献   

20.
Preparing both safe and high-performance lithium-ion batteries(LIBs) based on commonly used commercial electrolytes is highly desirable,yet challenging.To overcome the poor compatibility of conventional small-molecular flame-retardants as electrolyte additives for safe LIBs with graphite anodes,in this study,we propose and design a novel low-cost flame-retardant oligomer that achieves an accurate and complete reconciliation of fire safety and electrochemical performance in LIBs.Owing to the inte...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号