首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The author discusses the best approximate solution of the functional differential equation x′(t) = F(t, x(t), x(h(t))), 0 < t < l satisfying the initial condition x(0) = x0, where x(t) is an n-dimensional real vector. He shows that, under certain conditions, the above initial value problem has a unique solution y(t) and a unique best approximate solution p?k(t) of degree k (cf. [1]) for a given positive integer k. Furthermore, sup0?t?l ¦ p?k(t) ? y(t)¦ → 0 as k → ∞, where ¦ · ¦ is any norm in Rn.  相似文献   

2.
Results on partition of energy and on energy decay are derived for solutions of the Cauchy problem ?u?t + ∑j = 1n Aj?u?xj = 0, u(0, x) = ?(x). Here the Aj's are constant, k × k Hermitian matrices, x = (x1,…, xn), t represents time, and u = u(t, x) is a k-vector. It is shown that the energy of Mu approaches a limit EM(?) as ¦ t ¦ → ∞, where M is an arbitrary matrix; that there exists a sufficiently large subspace of data ?, which is invariant under the solution group U0(t) and such that U0(t)? = 0 for ¦ x ¦ ? a ¦ t ¦ ? R, a and R depending on ? and that the local energy of nonstatic solutions decays as ¦ t ¦ → ∞. More refined results on energy decay are also given and the existence of wave operators is established, considering a perturbed equation E(x) ?u?t + ∑j = 1n Aj?u?xj = 0, where ¦ E(x) ? I ¦ = O(¦ x ¦?1 ? ?) at infinity.  相似文献   

3.
This paper treats the quasilinear, parabolic boundary value problem uxx ? ut = ??(x, t, u)u(0, t) = ?1(t); u(l, t) = ?2(t) on an infinite strip {(x, t) ¦ 0 < x < l, ?∞ < t < ∞} with the functions ?(x, t, u), ?1(t), ?2(t) being periodic in t. The major theorem of the paper gives sufficient conditions on ?(x, t, u) for this problem to have a periodic solution u(x, t) which may be constructed by successive approximations with an integral operator. Some corollaries to this theorem offer more explicit conditions on ?(x, t, u) and indicate a method for determining the initial estimate at which the iteration may begin.  相似文献   

4.
Let m and vt, 0 ? t ? 2π be measures on T = [0, 2π] with m smooth. Consider the direct integral H = ⊕L2(vt) dm(t) and the operator (L?)(t, λ) = e?iλ?(t, λ) ? 2e?iλtT ?(s, x) e(s, t) dvs(x) dm(s) on H, where e(s, t) = exp ∫stTdvλ(θ) dm(λ). Let μt be the measure defined by T?(x) dμt(x) = ∫0tT ?(x) dvs dm(s) for all continuous ?, and let ?t(z) = exp[?∫ (e + z)(e ? z)?1t(gq)]. Call {vt} regular iff for all t, ¦?t(e)¦ = ¦?(e for 1 a.e.  相似文献   

5.
The message m = {m(t)} is a Gaussian process that is to be transmitted through the white Gaussian channel with feedback: Y(t) = ∫0tF(s, Y0s, m)ds + W(t). Under the average power constraint, E[F2(s, Y0s, m)] ≤ P0, we construct causally the optimal coding, in the sense that the mutual information It(m, Y) between the message m and the channel output Y (up to t) is maximized. The optimal coding is presented by Y(t) = ∫0t A(s)[m(s) ? m?(s)] ds + W(t), where m?(s) = E[m(s) ¦ Y(u), 0 ≤ u ≤ s] and A(s) is a positive function such that A2(s) E |m(s) ? m?(s)|2 = P0.  相似文献   

6.
According to a result of A. Ghizzetti, for any solution y(t) of the differential equation where y(n)(t)+ i=0n?1 gi(t) yi(t)=0 (t ? 1), 1 ¦gi(x)¦xn?I?1 dx < ∞ (0 ?i ? n ?1, either y(t) = 0 for t ? 1 or there is an integer r with 0 ? r ? n ? 1 such that limt → ∞ y(t)tr exists and ≠0. Related results are obtained for difference and differential inequalities. A special case of the former has interesting applications in the study of orthogonal polynomials.  相似文献   

7.
We consider the first initial-boundary value problem for (?u?t) + ?L1u + L0u = f(L0 and L1 are linear elliptic partial differential operators) and investigate the properties of u(x, t, ?) as ? ↓ 0 in the maximum norm. Special attention is paid to approximations obtained by the boundary layer method. We use a priori estimates.  相似文献   

8.
A theory of scattering for the time dependent evolution equations dudt = iHj(t)u, j = 0, 1 (1) is developed. The wave operators are defined in terms of the evolution operators Uj(t, s), which govern (1). The scattering operator remains unitary. Sufficient conditions for existence and completeness of the wave operators are obtained; these are the main results. General properties, such as the chain rule and various intertwining relations, are also established. Applications include potential scattering (H0(t) = ?Δ, Δ denoting the Laplacian, and H1(t) = ?Δ + q(t, ·)) and scattering for second-order differential operators with coefficients constant in the spatial variable (Hj(t) = ∑m, k = 1n amk(j)(t)(?2?xm ?xk) + bj(t) for j = 0, 1).  相似文献   

9.
For each t ? 0, let A(t) generate a contraction semigroup on a Banach space L. Suppose the solution of ut = ?A(t)u is given by an evolution operator V?(t, s). Conditions are given under which V?((t+s)?, s?) converges strongly as ? → 0 to a semigroup T(t) generated by the closure of A?f ≡ limT→∞(1T) ∝0TA(t)f dt.This result is applied to the following situation: Let B generate a contraction group S(t) and the closure of ?A + B generate a contraction semigroup S?(t). Conditions are given under which S(?t?) S?(t?) converges strongly to a semigroup generated by the closure of A?f ≡ limT→∞(1T) ∝ S(?t) AS(t)f dt. This work was motivated by and generalizes a result of Pinsky and Ellis for the linearized Boltzmann Equation.  相似文献   

10.
Two theorems are proved for the spherically symmetric solutions of the “bistable” reaction-diffusion equation ut = Δxu + ?(u), where ? is cubic-like and xRn. The first theorem says that, for a suitable class of initial data, there are only two types of asymptotic behavior, u(x, t) tends to an equilibrium solution as t → + ∞ or u(x, t) → 1 uniformly on compact sets. The second theorem says that in the latter case, if the solution is followed out along any ray, it approaches, in shape, the one-dimensional travelling wave.  相似文献   

11.
We shall examine the control problem consisting of the system dxdt = f1(x, z, u, t, ?)?(dzdt) = f2(x, z, u, t, ?) on the interval 0 ? t ? 1 with the initial values x(0, ?) and z(0, ?) prescribed, where the cost functional J(?) = π(x(1, ?), z(1, ?), ?) + ∝01V(x(t, ?), z(t, ?), u(t, ?), t, ?) dt is to be minimized. We shall restrict attention to the special problem where the fi's are linear in z and u, V is quadratic in z and independent of z when ? = 0, π and V are positive semidefinite functions of x and z, and V is a positive definite function of u. Under appropriate conditions, we shall obtain an asymptotic solution of the problem valid as the small parameter ? tends to zero. The techniques of constructing such asymptotic expansions will be stressed.  相似文献   

12.
A technique for the numerical approximation of matrix-valued Riemann product integrals is developed. For a ? x < y ? b, Im(x, y) denotes
χyχv2?χv2i=1mF(νi)dν12?dνm
, and Am(x, y) denotes an approximation of Im(x, y) of the form
(y?x)mk=1naki=1mF(χik)
, where ak and yik are fixed numbers for i = 1, 2,…, m and k = 1, 2,…, N and xik = x + (y ? x)yik. The following result is established. If p is a positive integer, F is a function from the real numbers to the set of w × w matrices with real elements and F(1) exists and is continuous on [a, b], then there exists a bounded interval function H such that, if n, r, and s are positive integers, (b ? a)n = h < 1, xi = a + hi for i = 0, 1,…, n and 0 < r ? s ? n, then
χr?χs(I+F dχ)?i=rsI+j=1pIji?1i)
=hpH(χr?1s)+O(hp+1)
Further, if F(j) exists and is continuous on [a, b] for j = 1, 2,…, p + 1 and A is exact for polynomials of degree less than p + 1 ? j for j = 1, 2,…, p, then the preceding result remains valid when Aj is substituted for Ij.  相似文献   

13.
We investigate the boundary value problem ?u?t = ?2u?x2 + u(1 ? u ? rv), ?v?t = ?2v?x2 ? buv, u(?∞, t) = v(∞, t) = 0, u(∞, t) = 1, and v(?∞, t) = γ ?t > 0 where r > 0, b > 0, γ > 0 and x?R. This system has been proposed by Murray as a model for the propagation of wave fronts of chemical activity in the Belousov-Zhabotinskii chemical reaction. Here u and v are proportional to the concentrations of bromous acid and bromide ion, respectively. We determine the global stability of the constant solution (u, v) ≡ (1,0). Furthermore we introduce a moving coordinate and for each fixed x?R we investigate the asymptotic behavior of u(x + ct, t) and v(x + ct, t) as t → ∞ for both large and small values of the wave speed c ? 0.  相似文献   

14.
In this paper we study the behavior of solutions of some quasilinear parabolic equations of the form
(?u?t) ? i=1n (ddxi) ai(x, t, u, ux) + a(x, t, u, ux)u + f(x, t) = O,
as t → ∞. In particular, the solutions of these equations will decay to zero as t → ∞ in the L norm.  相似文献   

15.
Consider the renewal equation in the form (1) u(t) = g(t) + ∝ot u(t ? τ) ?(τ) dτ, where ?(t) is a probability density on [0, ∞) and limt → ∞g(t) = g0. Asymptotic solutions of (1) are given in the case when f(t) has no expectation, i.e., 0 t?(t)dt = ∞. These results complement the classical theorem of Feller under the assumption that f(t) possesses finite expectation.  相似文献   

16.
Let {Xn}n≥1 be a sequence of independent and identically distributed random variables. For each integer n ≥ 1 and positive constants r, t, and ?, let Sn = Σj=1nXj and E{N(r, t, ?)} = Σn=1 nr?2P{|Sn| > ?nrt}. In this paper, we prove that (1) lim?→0+?α(r?1)E{N(r, t, ?)} = K(r, t) if E(X1) = 0, Var(X1) = 1, and E(| X1 |t) < ∞, where 2 ≤ t < 2r ≤ 2t, K(r, t) = {2α(r?1)2Γ((1 + α(r ? 1))2)}{(r ? 1) Γ(12)}, and α = 2t(2r ? t); (2) lim?→0+G(t, ?)H(t, ?) = 0 if 2 < t < 4, E(X1) = 0, Var(X1) > 0, and E(|X1|t) < ∞, where G(t, ?) = E{N(t, t, ?)} = Σn=1nt?2P{| Sn | > ?n} → ∞ as ? → 0+ and H(t, ?) = E{N(t, t, ?)} = Σn=1 nt?2P{| Sn | > ?n2t} → ∞ as ? → 0+, i.e., H(t, ?) goes to infinity much faster than G(t, ?) as ? → 0+ if 2 < t < 4, E(X1) = 0, Var(X1) > 0, and E(| X1 |t) < ∞. Our results provide us with a much better and deeper understanding of the tail probability of a distribution.  相似文献   

17.
Let Pij and qij be positive numbers for ij, i, j = 1, …, n, and consider the set of matrix differential equations x′(t) = A(t) x(t) over all A(t), where aij(t) is piecewise continuous, aij(t) = ?∑ijaij(t), and pij ? aij(t) ? qij all t. A solution x is also to satisfy ∑i = 1nxi(0) = 1. Let Ct denote the set of all solutions, evaluated at t to equations described above. It is shown that Ct, the topological closure of Ct, is a compact convex set for each t. Further, the set valued function Ct, of t is continuous and limitt → ∞C?t = ∩ C?t.  相似文献   

18.
Sufficient conditions are developed for the null-controllability of the nonlinear delay process (1) x?(t) = L(t, xt) + B(t) u(t) + f(t, xt, u(t)) when the values of the control functions u lie in an m-dimensional unit cube Cm of Em. Conditions are placed on f which guarantee that if the uncontrolled system x?(t) = L(t, xt) is uniformly asymptotically stable and if the linear control system x(t) = L(t, xt) + B(t) u(t) is proper, then (1) is null-controllable.  相似文献   

19.
This paper presents some comparison theorems on the oscillatory behavior of solutions of second-order functional differential equations. Here we state one of the main results in a simplified form: Let q, τ1, τ2 be nonnegative continuous functions on (0, ∞) such that τ1 ? τ2 is a bounded function on [1, ∞) and t ? τ1(t) → ∞ if t → ∞. Then y?(t) + q(t) y(t ? τ1(t)) = 0 is oscillatory if and only if y?(t) + q(t) y(t ? τ2(t)) = 0 is oscillatory.  相似文献   

20.
Numerical approximation of the solution of the Cauchy problem for the linear parabolic partial differential equation is considered. The problem: (p(x)ux)x ? q(x)u = p(x)ut, 0 < x < 1,0 < t? T; u(0, t) = ?1(t), 0 < t ? T; u(1,t) = ?2(t), 0 < t ? T; p(0) ux(0, t) = g(t), 0 < t0 ? t ? T, is ill-posed in the sense of Hadamard. Complex variable and Dirichlet series techniques are used to establish Hölder continuous dependence of the solution upon the data under the additional assumption of a known uniform bound for ¦ u(x, t)¦ when 0 ? x ? 1 and 0 ? t ? T. Numerical results are obtained for the problem where the data ?1, ?2 and g are known only approximately.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号