首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
MnO has a high theoretical capacity, moderate discharge plateau, and low polarization when it is used as the anode material in lithium battery. However, the issues that limit its application are its poor conductivity and large volume changes, which can easily result in the collapse of electrode structure during long-term cycling. In the present work, a carbon-coated MnO/graphene 3D-network anode material is synthesized by an electrostatic adsorption of dispersed precipitates precipitation method. The MnO nanoparticles coated by carbon are uniformly distributed on the surface of graphene nanosheets and form a 3D sandwich-like nanostructure. A carbon layer is coated on the surface of MnO nanoparticles, which slows down the volume expansion in the process of lithium intercalation. The graphene nanosheets are cross-linked through carbons in this 3D nanostructure, which provides mechanical support and effective electron conduction pathways during the charge-discharge. The electrochemical tests indicate that the prepared 3D carbon-coated MnO/graphene electrode exhibits an excellent rate capacity of 1247.3 and 713.2 mAh g?1 at 100 and 1000 mA g?1, respectively. The capacity is 792.2 mAh g?1 after long cycle at a current density of 1000 mA g?1. The specific capacity is higher than that of MnO-based composite lithium anode materials currently reported. The superior rate and cycling performances are attributed to the unique 3D-network structure, which provides an effectively conductive network, buffers volume expansion, and prevents falling and aggregation of MnO in the charge and discharge process of the electrode materials. The 3D-structured carbon-coated MnO/graphene anode material will have an excellent application prospect.
Graphical abstract Cyclic performance at 1 A g?1 and SEM images (inset) of the 3D-structured carbon-coated MnO/graphene nanocomposite.
  相似文献   

2.
Biomass-derived carbon (BMC) materials have attracted much attention due to their high performance and properties of abundant source. Herein, biomass carbon sheets (BMCS) from wheat straws had been successfully synthesized via a facile high temperature carbonization and expansion processes. The morphology of BMCS keeps the natural honeycomb-like shape of the cross section and the hollow tubular array structure of the vertical section with rich pores, which provides low-resistant ion channels to support fast diffusion. The (002) crystal plane reveals that the intercalation distance of carbon sheets is 0.383 nm larger than that graphite (0.335 nm), which benefits the larger sodium ion de/intercalation. By comparing different carbonization temperatures, wheat straws carbonized at 1200 °C (BMCS-1200) with well graphite microcrystallites show more excellent sodium ion storage performance than that of 900 °C (BMC-900). BMCS-1200 shows a stable reversible capacity of 221 mAh g?1 after 200 cycles at 0.05 A g?1, while BMC-900 is 162 mAh g?1 after 100 cycles. And it also exhibits better rate capability (220, 109 mAh g?1) than that of BMC-900 (125, 77 mAh g?1) at 0.2 and 1 A g?1, respectively. Finally, it delivers 89 mAh g?1 stable capacity after 1400 cycles at 1 A g?1 to prove its excellent long-term cycling stability.
Graphical abstract High temperature carbon sheets with well graphite microcrystallites synthesized from wheat straw forexcellent sodium ion storage performance
  相似文献   

3.
Li[Ni1/3Co1/3Mn1/3]O2 (NCM 111) is a promising alternative to LiCoO2, as it is less expensive, more structurally stable, and has better safety characteristics. However, its capacity of 155 mAh g?1 is quite low, and cycling at potentials above 4.5 V leads to rapid capacity deterioration. Here, we report a successful synthesis of lithium-rich layered oxides (LLOs) with a core of LiMO2 (R-3m, M?=?Ni, Co) and a shell of Li2MnO3 (C2/m) (the molar ratio of Ni, Co to Mn is the same as that in NCM 111). The core–shell structure of these LLOs was confirmed by XRD, TEM, and XPS. The Rietveld refinement data showed that these LLOs possess less Li+/Ni2+ cation disorder and stronger M*–O (M*?=?Mn, Co, Ni) bonds than NCM 111. The core–shell material Li1.15Na0.5(Ni1/3Co1/3)core(Mn1/3)shellO2 can be cycled to a high upper cutoff potential of 4.7 V, delivers a high discharge capacity of 218 mAh g?1 at 20 mA g?1, and retains 90 % of its discharge capacity at 100 mA g?1 after 90 cycles; thus, the use of this material in lithium ion batteries could substantially increase their energy density.
Graphical Abstract Average voltage vs. number of cycles for the core–shell and pristine materials at 20 mA g?1 for 10 cycles followed by 90 cycles at 100 mA g?1
  相似文献   

4.
A porous, hollow, microspherical composite of Li2MnO3 and LiMn1/3Co1/3Ni1/3O2 (composition: Li1.2Mn0.53Ni0.13Co0.13O2) was prepared using hollow MnO2 as the sacrificial template. The resulting composite was found to be mesoporous; its pores were about 20 nm in diameter. It also delivered a reversible discharge capacity value of 220 mAh g?1 at a specific current of 25 mA g?1 with excellent cycling stability and a high rate capability. A discharge capacity of 100 mAh g?1 was obtained for this composite at a specific current of 1000 mA g?1. The high rate capability of this hollow microspherical composite can be attributed to its porous nature.
Graphical Abstract ?
  相似文献   

5.
Hollow titanium dioxide (TiO2) microspheres were synthesized in one step by employing tetrabutyl orthotitanate (TBOT) as a precursor through a facile solvothermal method in the presence of NH4HCO3. XRD analysis indicated that anatase TiO2 can be obtained directly without further annealing. TiO2 hollow microspheres with diameters in the range of 1.0–4.0 μm were confirmed through SEM and TEM measurements. The specific surface area was measured to be 180 m2 g?1 according to the nitrogen adsorption–desorption isotherms. Superior photocatalytic performance and good lithium storage properties were achieved for resultant TiO2 samples. The H2 evolution rate of the optimal sample is about 0.66 mmol h?1 after loaded with 1 wt.% Pt (20 mg samples). The reversible capacity remained 143 mAh g?1 at a specific current of 300 mA g?1 after 100 charge–discharge cycles. This work provides a facile strategy for the preparation of hollow titanium dioxide microspheres and demonstrates their promising photocatalytic H2 evolution and the lithium storage properties.
Graphical abstract Hollow titanium dioxide spheres are directly synthesized via a facile template-free solvothermal method with the presence of NH4HCO3 based on inside-out Ostwald ripening (see picture), and demonstrated both as a photocatalyst for water splitting and a promising anode material for lithium-ion batteries. Superior photocatalytic performance and excellent lithium storage properties are achieved for resultant TiO2 hollow microspheres.
  相似文献   

6.
A novel polyhedral oligomeric silsesquioxane (POSS) composite polyacrylonitrile (PAN)-based porous structure gel polymer electrolyte (GPE) is prepared by phase inversion method. The POSS additive filler is firstly obtained in the dehydration condensation reaction of vinyltrimethoxysilane (VTMS) and 3-methacryloxypropyltrimethoxysilane (MPTMS). The composition and structure of synthetic POSS and the prepared POSS composite PAN-based GPEs are investigated. It is found that compared with pure PAN-based GPE, the POSS composite PAN-based GPE with 8 wt.% POSS presents the homogeneous pore distribution and abundant electrolyte uptake (540.4 wt.%), which endows GPE-8% with the excellent comprehensive performances: the highest ionic conductivity of 2.62?×?10?3 S cm?1 at room temperature, the higher lithium ion transference number of 0.38, the good compatibility with lithium anode, and the higher electrochemical stability window of 5.7 V (vs. Li/Li+). At 0.2 C, the GPE-8%-based lithium ion battery produces a satisfactory discharge capacity of 140 mAh g?1.
Graphical abstract ?
  相似文献   

7.
Free-standing and flexible NiMoO4 nanorods/reduced graphene oxide (rGO) membrane with a 3D hierarchical structure was successfully synthesized by a general approach including vacuum filtration followed by thermal reduction. NiMoO4 nanorods with about 50–100 nm diameter were embedded homogenously into the 3D rGO sheets and assembled with rGO to form a membrane about 10 μm in thickness. The NiMoO4/rGO membrane could be directly evaluated as anode materials for lithium-ion batteries (LIBs) without using binder. The 3D layer stacked graphene hierarchical architecture can not only offers a continuous conducting framework for efficient diffusion and transport of ion/electron but also accommodates the large volume expansion of NiMoO4 nanorod changes during cycling. Moreover, our results show that the NiMoO4/rGO membrane exhibited excellent electrochemical performance with a high reversible capacity of 945 mAh g?1 at a current density of 0.25 A g?1 as anode materials in LIBs.
Graphical abstract ?
  相似文献   

8.
In this paper, the LiNi0.5Mn1.5O4 cathode materials of lithium-ion batteries are synthesized by a co-precipitation spray-drying and calcining process. The use of a spray-drying process to form particles, followed by a calcination treatment at the optimized temperature of 750 °C to produce spherical LiNi0.5Mn1.5O4 particles with a cubic crystal structure, a specific surface area of 60.1 m2 g?1, a tap density of 1.15 g mL?1, and a specific capacity of 132.9 mAh g?1 at 0.1 C. The carbon nanofragment (CNF) additives, introduced into the spheres during the co-precipitation spray-drying period, greatly enhance the rate performance and cycling stability of LiNi0.5Mn1.5O4. The sample with 1.0 wt.% CNF calcined at 750 °C exhibits a maximum capacity of 131.7 mAh g?1 at 0.5 C and a capacity retention of 98.9% after 100 cycles. In addition, compared to the LiNi0.5Mn1.5O4 material without CNF, the LiNi0.5Mn1.5O4 with CNF demonstrates a high-rate capacity retention that increases from 69.1% to 95.2% after 100 cycles at 10 C, indicating an excellent rate capability. The usage of CNF and the synthetic method provide a promising choice for the synthesis of a stabilized LiNi0.5Mn1.5O4 cathode material.
Graphical Abstract Micro/nanostructured LiNi0.5Mn0.5O4 cathode materials with enhanced electrochemical performances for high voltage lithium-ion batteries are synthesized by a co-precipitation spray-drying and calcining routine and using carbon nanofragments (CNFs) as additive.
  相似文献   

9.
The three-dimensional porous Li3V2(PO4)3/nitrogen-doped reduced graphene oxide (LVP/N-RGO) composite was prepared by a facile one-pot hydrothermal method and evaluated as cathode material for lithium-ion batteries. It is clearly seen that the novel porous structure of the as-prepared LVP/N-RGO significantly facilitates electron transfer and lithium-ion diffusion, as well as markedly restrains the agglomeration of Li3V2(PO4)3 (LVP) nanoparticles. The introduction of N atom also has positive influence on the conductivity of RGO, which improves the kinetics of electrochemical reaction during the charge and discharge cycles. It can be found that the resultant LVP/N-RGO composite exhibits superior rate properties (92 mA h g?1 at 30 C) and outstanding cycle performance (122 mA h g?1 after 300 cycles at 5 C), indicating that nitrogen-doped RGO could be used to improve the electrochemical properties of LVP cathodes for high-power lithium-ion battery application.
Graphical abstract The three-dimensional porous Li3V2(PO4)3/nitrogen-doped reduced graphene oxide composite with significantly accelerating electron transfer and lithium-ion diffusion exhibits superior rate property and outstanding cycle performance.
  相似文献   

10.
Lithium ion capacitor (LIC) is a novel hybrid capacitor technology that possesses a better performance than the conventional supercapacitor, such as EDLC and lithium ion battery. However, the overall performance of LIC is limited by activated carbon’s capacity as its cathode. This work is focused on synthesize of activated carbon from Indonesian local orange peel waste for LIC cathode and its modification to perform a good electrochemical performances. Activated carbon was synthesized by ZnCl2 as impregnant with mass ratio of orange peel to ZnCl2 1:2 for 1 h at 500 °C. The obtained activated carbon possessed large surface area (1200 m2 g ?1), higher than commercial activated carbon (Merck-p.a.) with surface area of 775.6 m2 g?1. Modification was done using wet oxidation method by utilizing HNO3 65 %, H2SO4 98 %, and H2O2 30 %, with ratio 1:1 (w/w). Electrochemical properties were studied by using half cell test pouch with Li metal as reference electrode and 1 M LiPF6 (EC:EMC:DMC = 1:1:1) as electrolyte. Modification had successfully increased oxygen atoms in activated carbon samples. Surface-modified cells demonstrated a higher capacitance (almost twice in the galvanostatic test) than that of the unmodifed one due to the pseudocapacitance effect of oxygen functional groups. However, its electrochemical performance was unstable. The unmodified cell showed a stable performance with 56.3 F g?1 at current density of 0.3 mA g?1 and voltage window 2.5–4 V.
Graphical abstract ?
  相似文献   

11.
An environmentally friendly cell using polypyrrole-air regenerative cathode and zinc as anode is investigated in the 3% sodium chloride solution. The cell can operate in different charge and discharge mode. Polypyrrole can be reoxidized (doped) with chloride anions either by using dissolved oxygen or by an external power supply, e.g., small photovoltaic cell. In that way, after discharge, capacity retaining can be achieved by using seawater as the electrolyte. During low discharge rate, the delicate balance between solid state diffusion-controlled dedoping and chemical oxidation of polypyrrole produced by hydrogen peroxide is achieved, generating stable voltage plateau. The cell is proposed to operate as a power supply for different sensor devices in two modes. In the low discharge mode (10–20 mA g?1), it can be used for data acquisition, and at the fast discharge mode (up to 2 A g?1) for collecting data transmission.
Graphical abstract Charge-discharge curves for different curent densities of Zn|3.5% NaCl(aq)|PPy. Inset: Continuous discharge of the cell under external load of 1 kΩ and constant air supply, during 1-h discharge and 1-h reoxidation charge
  相似文献   

12.
LiMn2O4 is one of the most promising cathode materials due to its high abundance and low cost. However, the practical application of LiMn2O4 is greatly limited owing to its low volumetric energy density. Therefore, increasing its energy density is an urgent problem to be resolved. Herein, using the simple and mass production preferred solid-state reaction, surficial Nb-doped LiMn2O4 composed of the truncated octahedral or spherical-like primary particles are successfully synthesized. Auger electron spectroscopy (AES) and X-ray diffraction (XRD) characterizations confirm that most of Nb5+ enrich in the surficial layer of the particles to form a LiMn2-xNbxO4 phase. This kind of doping can increase the specific discharge capacity of LiMn2O4 materials. Contrast with the pristine LiMn2O4, the discharge capacity of LiMn1.99Nb0.01O4-based 18650R-type battery increases from 1497 to 1705 mAh with the volumetric energy density increasing by ~?13.9%, benefiting from the joint increments of the specific discharge capacity from 119.5 to 123.7 mAh g?1 and the compacted density from 2.81 to 3.10 g cm?3. Furthermore, the capacity retention after 500 cycles at 1 C (1500 mA) is also improved by 17.1%.
Graphical abstract ?
  相似文献   

13.
In the current work, the effect of aniline concentration on the polymerization process and supercapacitive behavior of graphene oxide/multiwalled carbon nanotubes/polyaniline (GMP) nanocomposites were studied. Based on the obtained results, GMP nanocomposite with 0.5 M aniline (GMP5) was selected as the optimum concentration in terms of high current density and high specific capacitance. Nafion-based ionic polymer-free metal composite (IPFMC) supercapacitor was fabricated for the GMP5 nanocomposite. Solid-state symmetric supercapacitor was made after spraying of GMP5 in. on both sides of Nafion membrane. The electrochemical properties were investigated by cyclic voltammetry (CV), galvanostatic charge–discharge (CD), and electrochemical impedance spectroscopy (EIS) techniques in 0.5 M Na2SO4.The specific capacitance of 383.25 F g?1 (326 mF cm?2) and 527.5 F g?1 (42 mF cm?2) was obtained for the GMP5 in solid-state supercapacitor and three-electrode cell at a scan rate of 10 mV s?1, respectively. The maximum energy and power densities of 53.64 and 1777.4 W kg?1 were obtained for the IPFMC-based supercapacitor.
Graphical abstract Schematic of the solid-state supercapacitor based on the GMP5 nanocomposite
  相似文献   

14.
Hierarchical CuO nanosheets were synthesized through a facile, eco-friendly reflux deposition approach for supercapacitor electrode material for energy storage. The resultant CuO nanosheets were characterized by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and nitrogen adsorption-desorption isotherm techniques. The supercapacitor behavior of CuO nanosheets was investigated by cyclic voltammetry, galvanostatic charge/discharge, and electrochemical impedance spectroscopy in novel 0.1 M aqueous 1-(1′-methyl-2′-oxo-propyl)-3-dimethylimidazolium chloride [MOPMIM][Cl] ionic liquid as an electrolyte. The result demonstrate that CuO nanosheets exhibit specific capacitance of 180 F g?1 at 10 mV s?1 scan rate which is the highest value in ionic liquid electrolyte and 87% specific capacitance retention after 5000th cycle. The electrochemical performance proves CuO nanosheets as electrode with ionic liquid electrolyte for developing green chemistry approach in supercapacitor.
Graphical abstract As-synthesized, CuO nanosheets demonstrate excellent supercapacitor electrode performance with high specific capacitance of 180 F g?1 at 10 mV s?1 scan rate and 87% specific capacitance retention in 0.1 M aqueous [MOPMIM][Cl] IL electrolyte
  相似文献   

15.
In operando quantification of field-assisted ion release during high-voltage anodisation (up to 100 V SHE) of Nb in 0.1 M sulphuric acid was performed. Electrochemical high-field oxide formation under both potential and current control was studied separately. The quantification of in situ ion release via ICP-MS revealed an increase of the oxide dissolution factor (from 337 to 422 fm V?1) when decreasing the potential scan rate from 200 to 100 mV s?1. Dissolution rates measured during galvanostatic oxide formation allowed measuring oxide dissolution factors of 719 and 837 fm V?1 for current densities of 1.0 and 0.5 mA cm?2, respectively. As compared to the potentiodynamic case, higher dissolution rates and oxide dissolution factors were measured for galvanostatic anodisation. The overall fraction of the charge used for generation of soluble Nb species was below 0.4% for all oxide growth regimes. Cross-sectional SEM imaging proofs an oxide formation factor of 2.1 nm V?1. The surface of anodised films was extremely smooth and featureless without any cracks or voids. Based on X-ray diffraction, the films were found to be amorphous, indicating that no field crystallisation is occurring under the applied oxide growth conditions even at higher voltages.
Graphical abstract Schematic live immaging of Nb dissolution during anodization and its quantification via ICP-MS.
  相似文献   

16.
Hydrothermally synthesized Co3O4 microspheres were anchored to graphite oxide (GO) and thermally reduced graphene oxide (rGO) composites at different cobalt weight percentages (1, 10, and 100 wt%). The composite materials served as the active materials in bulk electrodes for two-electrode cell electrochemical capacitors (ECCs). GO/Co3O4–1 exhibited a high energy density of 35 W kg?1 with a specific capacitance (C sp) of 196 F g?1 at a maximum charge density of 1 A g?1. rGO/Co3O4-100 presented high specific power output values of up to 23.41 kW h kg?1 with linear energy density behavior for the charge densities applied between 0.03 and 1 A g?1. The composite materials showed Coulombic efficiencies of 96 and 93 % for GO/Co3O4–1 and rGO/Co3O4–100 respectively. The enhancement of capacitive performance is attributed to the oxygenated groups in the GO ECC and the specific area in the rGO ECC. These results offer an interesting insight into the type of carbonaceous support used for graphene derivative electrode materials in ECCs together with Co3O4 loading to improve capacitance performance in terms of specific energy density and specific power.
Graphical abstract ?
  相似文献   

17.
Tetra-β-nitro-substituted nickel phthalocyanine (TN-NiPc) and hollow phthalocyanine (TN-H2Pc) were synthesized and investigated as novel organic electrode materials for rechargeable lithium batteries. After the two H atoms in the center of TN-H2Pc were replaced with Ni atoms, the interactive force between the phthalocyanine rings was reduced, which resulted in a fluffy morphology for the TN-NiPc that was beneficial to the transition of Li+. As a result, better electrochemical properties and reversibility were observed in the TN-NiPc electrodes compared to the TN-H2Pc electrode. The capacity of TN-NiPc electrode was stable at about 280 mAh g?1 at 0.2 C after 250 cycles at several different current rates of 0.1, 0.2, 0.5, and 1 C. The TN-NiPc based cathode materials may provide new opportunities for organic, flexible, and stable secondary lithium batteries.
Graphical Abstract The TN-NiPc electrode shows better electrochemical properties than that of TN-H 2 Pc electrode, which is due to the strong hydrogen bond interaction and π-π interaction of TN-H 2 Pc molecules, resulting in more dense stacking degree of the phthalocyanine ring and restricting the transport of Li+ .
  相似文献   

18.
There is a growing need for the electrode with high mass loading of active materials, where both high energy and high power densities are required, in current and near-future applications of supercapacitor. Here, an ultrathin Co3S4 nanosheet decorated electrode (denoted as Co3S4/NF) with mass loading of 6 mg cm?2 is successfully fabricated by using highly dispersive Co3O4 nanowires on Ni foam (NF) as template. The nanosheets contained lots of about 3~5 nm micropores benefiting for the electrochemical reaction and assembled into a three-dimensional, honeycomb-like network with 0.5~1 μm mesopore structure for promoting specific surface area of electrode. The improved electrochemical performance was achieved, including an excellent cycliability of 10,000 cycles at 10 A g?1 and large specific capacitances of 2415 and 1152 F g?1 at 1 and 20 A g?1, respectively. Impressively, the asymmetric supercapacitor assembled with the activated carbon (AC) and Co3S4/NF electrode exhibits a high energy density of 79 Wh kg?1 at a power density of 151 W kg?1, a high power density of 3000 W kg?1 at energy density of 30 Wh kg?1 and 73 % retention of the initial capacitance after 10,000 charge-discharge cycles at 2 A g?1. More importantly, the formation process of the ultrathin Co3S4 nanosheets upon reaction time is investigated, which is benefited from the gradual infiltration of sulfide ions and the template function of ultrafine Co3O4 nanowires in the anion-exchange reaction.
Graphical abstract The ultrathin 2D Co3S4 nanosheets fabricated on 3D Ni foam and the formation process of the ultrathin Co3S4 nanosheets upon reaction times has been investigated. At the same time, the Co3S4/NF electrode displays an outstanding specific capacitance of 2420 F g?1 at 1 A g?1 with high mass loading of 6 mg cm?2.
  相似文献   

19.
The integration of a battery-type electrode and of a capacitor-type electrode in a single device by proper design is an effective strategy in developing energy storage devices with high energy and power densities. Herein, we present a battery-supercapacitor hybrid device using metallic zinc as anode, a biodegradable ionic liquid (IL) as electrolyte, and graphite as cathode. The recently developed choline acetate ([Ch]OAc) biodegradable IL-based electrolyte enables reversible deposition/stripping of Zn(II). Spongy-like Zn with a high surface area is obtained, which allows fast charge/discharge at high rates. The adsorption/desorption of ions on the surface of the graphite cathode and intercalation/deintercalation of anions into/from the graphite layers occur at the graphite cathode. Raman spectra and X-ray photoelectron reveal the intercalation of IL into and the adsorption of IL on the graphite. Highly reversible adsorption/desorption of ions on the surface of the graphite electrodes in the [Ch]OAc-based electrolyte was demonstrated by a symmetric cell. The Zn/graphite hybrid device delivers an energy density of 53 Wh kg?1 at a power density of ~ 145 W kg?1 and 42 Wh kg?1 at ~ 400 W kg?1. The hybrid device also exhibits a long cycle life with ~ 86% specific capacitance retained after 1000 cycles at a current density of 0.5 A g?1. The combination of well-available zinc, inexpensive graphite, and a biodegradable IL electrolyte in a cell could open new avenues for sustainable energy applications.
Graphical abstract ?
  相似文献   

20.
A series of PANI-CNTs/TiO2 nanotubes/Ti electrodes were fabricated via pulse current co-electrodeposition of polyaniline and functionalized carbon nanotubes onto TiO2 nanotubes/Ti electrodes. FT-IR spectrometry, X-ray photoelectron spectroscopy, and scanning electron microscopy were applied in order to characterize the modified TiO2 nanotubes/Ti electrodes. The morphology studies showed that the PANI-CNTs/TiO2 nanotubes/Ti nanocomposite electrode has many interlaced PANI-CNTs nanorods on the surface of TiO2 nanotubes. The electrochemical measurements of the modified electrodes confirmed that the CNTs in the composite can significantly improve the capacitive behavior as well which have been compared with that of PANI/TiO2 nanotubes/Ti electrodes. The modified electrode exhibited much higher specific capacitance (190 mF cm?2 with 90% retention after 1000 cycles) compared to the PANI/TiO2 nanotubes/Ti (70 mF cm?2 with 77% retention after 1000 cycles) at a current density of 0.85 mA cm?2, indicating its great potential for supercapacitor applications.
Graphical abstract Interlaced polyaniline/carbon nanotube nanocomposite electrodeposited on TiO2 nanotubes/Ti
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号