首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
采用数值计算方法对亚音速三角翼纵向及带有小侧滑情况下的流场结构和气动力特性进行了计算。文中给出了三角翼大迎角纵向情况下气动力、机翼前缘分离涡轴线位置和旋涡破裂位置随迎角的变化规律,以及带有横侧小扰动和小侧滑情况下流场结构的非对称性对气动力的影响。计算结果表明与实验结果符合较好。  相似文献   

2.
We present an effort to model the development and the control of the vortex breakdown phenomenon on a delta wing. The pair of the vortices formed on the suction side of a delta wing is the major contributor to the lift generation. As the angle of attack increases, these vortices become more robust, having high vorticity values. The critical point of a delta wing operation is the moment when these vortices, after a certain angle of attack, are detached from the wing surface and wing stall occurs. In order to delay or control the vortex breakdown mechanism, various techniques have been developed. In the present work, the technique based on the use of jet-flaps is numerically investigated with computational fluid dynamics by adopting two eddy-viscosity turbulence models. The computational results are compared with the experimental data of Shih and Ding (1996). It is shown that between the two turbulence models, the more advanced one, which adopts a non-linear constitutive expression for the Reynolds-stresses, is capable to capture the vortex breakdown location for a variety of jet exit angles. The performance assessment of the models is followed by the investigation of the effect of the jet-flap on the lift and drag coefficients.  相似文献   

3.
The numerical investigation has been performed to explore the feasibility of vortex control by leading edge sucking excitation on a delta wing. The results reveal that the flow on the upper surface of the delta wing changes significantly in a wide range of the angle of attack. For the vortical flow at moderate angle of attack, the secondary and tertiary vortices are weakened or suppressed, and the total lift is almost unchanged. For the stalled flow at high angle of attack, the leading edge concentrated vortex is recovered, and the lift is enhanced with increasing suction rate. For the bluff-body flow at even high angles of attack, the lift can still be improved. The concentrated vortex disappears on the upper surface, and the load increment is nearly unchanged along the chordwise direction. The project supported by the National Natural Science Foundation of China (19802018).  相似文献   

4.
Seven hole probe measurement of leading edge vortex flows   总被引:1,自引:0,他引:1  
This paper discusses the use of a seven-hole probe on measurements of leading edge vortices of highly sweep delta wing planforms. Intrusive probe data taken with the pressure probe were compared with non-intrusive measurements made with laser Doppler anemometry system. In addition to probe size, the natural position of breakdown and the sweep angle of the wing are also factors in determining sensitivity of the flow to probe interference. At low angles of attack vortex breakdown does not occur in the vincinity of the model and the seven hole probe was found to yield reasonably accurate measurements. When the angle of attack of the model was increased so that vortex breakdown was near the trailing edge, introducing the probe over the wing would cause the breakdown position to move ahead of the probe. However, when breakdown naturally occurred ahead of the mid-chord of the wing the vortices were found to be less sensitive to a probe placed behind the breakdown point. Vortex breakdown on a lower swept wing is found to be more sensitive to interference. Near the breakdown region, seven hole probe measurement is less accurate due to a combination of probe interference and flow reversal.  相似文献   

5.
基于雨燕翅膀的仿生三角翼气动特性计算研究   总被引:1,自引:1,他引:0  
张庆  叶正寅 《力学学报》2021,53(2):373-385
针对低雷诺数微型飞行器的气动布局,设计出类似雨燕翅膀的一组具有不同前缘钝度的中等后掠(Λ=50?)仿生三角翼.为了定量对比研究三角翼后缘收缩产生的气动效应,设计了一组具有同等后掠的普通三角翼.为了深入研究仿生三角翼布局的前缘涡演化特性以及总体气动特性,采用数值模拟方法详细地探索了低雷诺数(Re=1.58×104)流动条...  相似文献   

6.
常思源  肖尧  李广利  田中伟  崔凯 《力学学报》2022,54(10):2760-2772
高压捕获翼新型气动布局在高超声速设计状态下具有较好的气动性能, 新升力面的引入使其在亚声速条件下也具有较大的升力, 但在亚声速下的稳定特性还有待研究. 基于高压捕获翼气动布局基本原理, 在机身-三角翼组合体上添加单支撑和捕获翼, 设计了一种参数化高压捕获翼概念构型. 以捕获翼和机体三角翼上/下反角为设计变量, 采用均匀试验设计、计算流体力学数值计算方法及Kriging代理模型方法, 研究了0° ~ 10°攻角状态下不同翼反角对高压捕获翼构型亚声速气动特性的影响, 重点分析了升阻特性、纵向和横航向稳定性的变化规律以及流场涡结构等. 结果表明, 小攻角状态下翼反角对升阻比的影响比大攻角更加显著, 捕获翼上反时, 升阻比略微增大, 下反则升阻比减小; 三角翼上反时, 升阻比减小, 下反则升阻比先略微增大后缓慢减小; 翼反角对纵向稳定性的总体影响较小, 捕获翼上反会稍微提高纵向稳定性, 而三角翼上反则会降低纵向稳定性; 捕获翼或三角翼上反都会增强横向稳定性, 下反则减弱横向稳定性, 但大攻角状态时, 三角翼上反角过大对提升横向稳定性作用有限; 捕获翼上反航向稳定性增强, 下反航向稳定性则减弱, 而三角翼下反对提升航向稳定性的整体效果比上反更加显著.   相似文献   

7.
A detailed investigation of the velocity and vorticity fields of a pair of vortices growing over a 75°-sweep delta wing is carried out through LDV measurements of three components of velocity and vorticity. Data are obtained along one of the vortices. The wing is undergoing a ramp-like pitch-up motion. The evolution of the flow field in four planes normal to the free-stream velocity is captured at 100 time instants through the wing motion. The delta wing is pitched through angles of attack ranging from 28° to 68°. From the velocity data at each incidence, the corresponding vorticity field is calculated. Hysteresis effects on vortex development and breakdown are studied through axial velocity and vorticity contours. The topologies of streamlines and vortex lines are compared with the corresponding topologies of the steady case. It is found that vortex breakdown can be detected first by a drastic reduction of the axial velocity. This phenomenon is developing in a non-axisymmetric fashion, beginning at the inboard side of the vortex. This is followed by a reduction of the axial vorticity component and finally by a reversal of the azimuthal vorticity component.This work was supported by the Air Force Office of Scientific Research, Project No. AFOSR-91-0310 and was monitored by Major Daniel Fant.  相似文献   

8.
李立 《力学与实践》2017,39(1):18-24
提出一种基于非结构混合网格和有限体积法的有效计算策略,对第二期国际涡流试验项目(second international vortex flow experiment,VFE-2)的尖前缘65°三角翼在马赫数0.4,迎角20.3°,雷诺数2×10~6条件下的亚音速复杂流场结构进行数值模拟,重点探讨了基于计算数据进行该类型复杂涡系干扰表面和空间流场关键特征提取和数据可视化问题.通过与相关试验类比,建立了与先进试验流动显示技术相比拟的定性和定量分析方法,为三角翼这类复杂流场结构的精细分析奠定了技术基础.采用上述方法,细致分析了亚音速三角翼的大迎角复杂旋涡流场结构,得到了与试验一致的结论.研究证实:在大迎角条件下,三角翼流动物理复杂,黏性效应耦合严重,只有通过N-S方程计算才能准确地捕捉主涡和二次涡的发展.  相似文献   

9.
Experiments on the unsteady nature of vortex breakdown over delta wings   总被引:2,自引:0,他引:2  
 Vortex breakdown location over delta wings is not steady and exhibits fluctuations along the axis of the vortices. Experiments on the nature and source of these fluctuations were carried out. Spectral analysis and other statistical concepts were used to quantify the unsteady behaviour of vortex breakdown location obtained from flow visualization. The fluctuations consist of quasi-periodic oscillations and high-frequency low amplitude displacements. The quasi-periodic oscillations are due to an interaction between the vortices, which cause the antisymmetric motion of breakdown locations for left and right vortices. The oscillations are larger and more coherent as the time-averaged breakdown locations get closer to each other as angle of attack or sweep angle is varied. The frequency of this organized motion is much smaller than the frequency of any other known instabilities. On the other hand, the most probable frequency for the high-frequency small-amplitude fluctuations of breakdown location is in the same range as the frequency of Kelvin–Helmholtz instability of the separated shear layer. A mechanism for the interaction between the vortices causing the oscillations of breakdown location was proposed. When a splitter plate was placed in the symmetry plane of the wing, the large amplitude quasi-periodic oscillations of breakdown location were suppressed. Received: 10 March 1998 / Accepted: 27 October 1998  相似文献   

10.
An effective means of controlling wing leading-edge stall at high angles of attack is deflection of the nose in order to assure shock-free entrance of the stream. A numerical method of computing the angles of nose deflection and the aerodynamic characteristics of a thin wing of arbitrary planform for a shock-free entrance of the steady ideal incompressible fluid stream is elucidated in this paper on the basis of nonlinear wing theory [1]. The problem is solved by the method of discrete vortices. In the computations, the wing and its wake, replaced by a vortex sheet, are modeled by a system of discrete vortices which are nonlinear segments with constant circulation along the length. The angles of deflection of the nose and the aerodynamic characteristics of the wing, including shunting of the free vortices shed from the side and trailing edges, are determined during the computation. Examples of an electronic digital computer are presented.  相似文献   

11.
王晋军  秦永明 《实验力学》2001,16(4):372-377
本文应用染色液流动显示技术对后缘偏转喷流情况下76°/40°双三角翼前缘涡破裂位置的变化进行了观测,实验结果表明偏转喷流主要推迟与喷流方向相同一侧前缘涡的破裂,而使另一侧前缘涡破裂略有提前.随着喷流偏转角度的增大,喷流使两前缘涡破裂位置差逐渐增大.另外,随着模型攻角的增大,前缘涡涡核与双三角翼翼面的夹角逐渐增大,导致偏转喷流的作用逐渐减弱.  相似文献   

12.
Leading-edge vortex formation and breakdown have been measured over a periodically plunging non-slender delta wing at a high angle of attack, using a three-dimensional particle-tracking method. A very rare type of vortex breakdown in the form of a double helix has been captured in the phase-averaged flow at a specific phase of the oscillation cycle.  相似文献   

13.
A semi-empirical model was developed to study the breakdown effects on maneuvering delta wings performing very high angle of attack excursions. The basic vortical flow model used was the Brown & Michael model and an unsteady source distribution was found to simulate the breakdown of the leading edge vortices. The source distribution is based on experimental observations of the vortex breakdown chordwise propagation during pitch-down and pitch-up motion. In spite of the simplicity of the vortical model used, the new model simulates the present complicated flow field. This model succeeds in predicting the leading edge core position hysteresis, the hysteresis in the unsteady pressure distribution and the corresponding airloads at extreme angles of attack. The normal force and pitching moment results are in good agreement with experimental measurements.  相似文献   

14.
 The effects of oscillating leading-edge flaps on leading-edge vortices and vortex breakdown were investigated for a delta wing with upward-deflected flaps. The variation of breakdown location revealed hysteresis loops. The time-averaged breakdown location over one cycle may move upstream or downstream compared to the quasi-steady case, depending on the amplitude of flap oscillations and angle of attack. Measurements of the phase-averaged velocity upstream of breakdown did not reveal any correlation to the response of breakdown location. The effect of oscillating flaps is largest when the breakdown location is near the trailing-edge region in the static case. Received: 2 February 1997/Accepted: 7 April 1997  相似文献   

15.
In order to investigate the breakdown of vortices generated by the leading edge of delta wings, LDA-measurements have been performed in the flow on the suction side of a delta wing of aspect ratio A = 2. The measurements describe the growth of the vortex along the leading edge and reveal a certain radial structure upstream of the breakdown point. Moreover they shed light on the mechanism responsible for the onset of vortex breakdown on the suction side of a wing.

The occurrence of the breakdown phenomenon on a delta wing may be prevented or at least retarded by the use of spanwise blowing jets. The interaction of vortex and jets giving rise to these effects will also be discussed with the help of measured velocity profiles.  相似文献   


16.
Longitudinal vortices disrupt the growth of the thermal boundary layer, thereby the vortex generators producing the longitudinal vortices are well known for the enhancement of heat transfer in compact heat exchangers. The present investigation determines the heat transfer characteristics with secondary flow analysis in plate fin triangular ducts with delta wing vortex generators. This geometrical configuration is investigated for various angles of attack of the wing i.e. 15°, 20°, 26° and 37° and Reynolds numbers 100 and 200. The constant wall temperature boundary condition is used. The solution of the complete Navier Stokes equation and the energy equation is carried out using the staggered grid arrangement. The performance of the combination of triangular secondary fins and delta wing with stamping on slant surfaces has also been studied. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
The transonic flowfields and vortex-breakdown over a slender wing with the angle of attack from 10° to 28° are studied numerically, and the emphasis is on the secondary separation and the charateristics of vortex-breakdown. The results indicated that: (a) TVD schemes have strong capability for capturing vortices in three-dimensional transonic separated flow at large angle of attack. (b) The development of secondary vortices is more complex than that of leading-edge ones, and is affected by wing's configuration, angle of attack and compressibility simultaneously, and the effect of compressibility is more severe at low angle of attack. (c) The starting angle of attack for vortex-breakdown (when vortex bursting point crosses trailing-edge) is about 18° forM∞=0.85, then the bursting point moves upstream quickly with increasing angle of attack. (d) At α=24°, breakdown occurs over most part of upper side, and the wing begins to stall. Therefore, there is a large lag of angle of attack between the beginning of vortex-breakdown and the stall of the wing. (e) This lag increase with the decreasing of Mach number.  相似文献   

18.
A numerical method is described for the calculation of the distributed and total aerodynamic characteristics of a thin wing of any planform. We use only the generally accepted hypotheses-smoothness of flow around the wing and the Chaplygin-Zhukovskii condition of finite velocity at the trailing edges. The medium is considered ideal and incompressible.The development of a nonlinear theory for the wing of small aspect ratio in a compressible medium is one of the most important and difficult problems of wing theory. It has long attracted the attention of the aerodynamiscists. Chaplygin touched on this question in his 1913 report On the vortex theory of the finite span wing, presented to the Moscow Mathematical Society. Several interesting ideas and schemes were proposed by Golubev (see, for example, [2]). The first adequately correct and effective attempt to determine theoretically the nonlinear variation of wing normal force with angle of attack was that of Bollay [3]. In this work he studied rectangular wings of very small aspect ratio. The circulation variation law along the span was taken to be constant, and along the chord it was taken the same as for a flat plate of infinite span. It was also assumed that the centerlines of the free vortices trailing from the wing tips are straight lines and form the same angle with the plane of the wing. The magnitude of this angle was calculated from the average value of the relative velocity. The boundary condition at the wing was satisfied at a single point.In several later studies [4–8] attempts have been made to extend this approach somewhat. In [7] the circulation variation law along the wing chord is calculated, and the boundary conditions are satisfied more exactly. However, attempts to convert to the study of wings of more complex planform, when the circulation can no longer be considered constant along the span, are hydrodynamically incorrect [5, 6, 8]. In these studies schemes are used in which with smooth flow around the wing the free vortices stand off from the wing surface. The angles which the vortex centerlines form with the wing surface are assumed or are calculated on the basis of very arbitrary hypotheses.In the present paper the vortex layer which simulates the wing surface, just as in the linear theory [9, 10], is replaced by a system of discrete vortices. The free vortices away from the wing then are discrete curvilinear vortex filaments. Each of them is replaced by a series of rectilinear vortex segments. The number of bound and free discrete vortices may be increased without limit. The position of the free vortex segments is determined in the computation process, which is carried out sequentially for a series of angles of attack , beginning with 0 when the linear theory scheme holds. We note that the question of accounting for the effect of the leading-edge free vortex sheet is not considered here, although the method described may also be used to obtain results for this problem.The proposed method turned out to be very general, flexible and convenient for the digital computer. It permits studying the practical convergence of the solution, and also permits obtaining not only the total and distributed characteristics of the wing of arbitrary planform, but also studying such delicate questions as the rollup of the vortex sheet behind the wing.The author wishes to thank O. N. Sokolov and T. M. Muzychenko for the example calculations.  相似文献   

19.
Flow past model wings is experimentally investigated in a subsonic wind tunnel at large angles of attack at which the laminar boundary layer separates near the leading edge of the wing (flow stall). The object of the study was the flow structure within the separation zone. The carbon-oil visualization of surface streamlines used in the experiments showed that in the separation zone there exist one or more pairs of large-scale vortices rotating in the wing plane. Certain general properties of the vortex structures in the separation zone are found to exist, whereas the flow patterns may differ depending on the model aspect ratio, the yaw angle, and other factors.  相似文献   

20.
A laser scanning technique, which utilizes a galvanometer scanner to produce particle-image photographs, is employed to investigate the flow over a delta wing undergoing pitching maneuvers at a high angle of attack. Use of a unique forcing system and a large-scale prism arrangement allow characterization of the instantaneous velocity field over the entire crossflow plane at a desired angle of attack.Contours of constant streamwise vorticity are calculated from the crossflow velocity field at various pitching rates. The vorticity distribution occurring during the pitch-up motion differs substantially from that on the stationary wing at the same angle of attack. During the pitch-up motion, the leading-edge vortex is remarkably coherent, in contrast to the disordered structure on the stationary wing. During the corresponding pitch-down motion, the vorticity distribution is quite similar to that on the stationary wing at the same angle of attack. This behavior is evident for a range of pitching rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号