首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
In recent years second-order sufficient conditions of an isolated local minimizer for convex composite optimization problems have been established. In this paper, second-order optimality conditions are obtained of aglobal minimizer for convex composite problems with a non-finite valued convex function and a twice strictly differentiable function by introducing a generalized representation condition. This result is applied to a minimization problem with a closed convex set constraint which is shown to satisfy the basic constraint qualification. In particular, second-order necessary and sufficient conditions of a solution for a variational inequality problem with convex composite inequality constraints are obtained. © 1998 The Mathematical Programming Society, Inc. Published by Elsevier Science B.V.  相似文献   

2.
We consider convex problems of semi-infinite programming (SIP) using an approach based on the implicit optimality criterion. This criterion allows one to replace optimality conditions for a feasible solution x 0 of the convex SIP problem by such conditions for x 0 in some nonlinear programming (NLP) problem denoted by NLP(I(x 0)). This nonlinear problem, constructed on the base of special characteristics of the original SIP problem, so-called immobile indices and their immobility orders, has a special structure and a diversity of important properties. We study these properties and use them to obtain efficient explicit optimality conditions for the problem NLP(I(x 0)). Application of these conditions, together with the implicit optimality criterion, gives new efficient optimality conditions for convex SIP problems. Special attention is paid to SIP problems whose constraints do not satisfy the Slater condition and to problems with analytic constraint functions for which we obtain optimality conditions in the form of a criterion. Comparison with some known optimality conditions for convex SIP is provided.  相似文献   

3.
In this article sufficient optimality conditions are established for optimal control problems with pointwise convex control constraints. Here, the control is a function with values in Rn. The constraint is of the form u(x)∈U(x), where U is a set-valued mapping that is assumed to be measurable with convex and closed images. The second-order condition requires coercivity of the Lagrange function on a suitable subspace, which excludes strongly active constraints, together with first-order necessary conditions. It ensures local optimality of a reference function in an L-neighborhood. The analysis is done for a model problem namely the optimal distributed control of the instationary Navier-Stokes equations.  相似文献   

4.
《Optimization》2012,61(5):921-954
ABSTRACT

The paper considers a class of vector optimization problems with cone constrained generalized equations. By virtue of advanced tools of variational analysis and generalized differentiation, a limiting normal cone of the graph of the normal cone constrained by the second-order cone is obtained. Based on the calmness condition, we derive an upper estimate of the coderivative for a composite set-valued mapping. The necessary optimality condition for the problem is established under the linear independent constraint qualification. As a special case, the obtained optimality condition is simplified with the help of strict complementarity relaxation conditions. The numerical results on different examples are given to illustrate the efficiency of the optimality conditions.  相似文献   

5.
In this paper necessary, and sufficient optimality conditions are established without Lipschitz continuity for convex composite continuous optimization model problems subject to inequality constraints. Necessary conditions for the special case of the optimization model involving max-min constraints, which frequently arise in many engineering applications, are also given. Optimality conditions in the presence of Lipschitz continuity are routinely obtained using chain rule formulas of the Clarke generalized Jacobian which is a bounded set of matrices. However, the lack of derivative of a continuous map in the absence of Lipschitz continuity is often replaced by a locally unbounded generalized Jacobian map for which the standard form of the chain rule formulas fails to hold. In this paper we overcome this situation by constructing approximate Jacobians for the convex composite function involved in the model problem using ε-perturbations of the subdifferential of the convex function and the flexible generalized calculus of unbounded approximate Jacobians. Examples are discussed to illustrate the nature of the optimality conditions. Received: February 2001 / Accepted: September 2001?Published online February 14, 2002  相似文献   

6.
In this paper, we present sufficient global optimality conditions for weakly convex minimization problems using abstract convex analysis theory. By introducing (L,X)-subdifferentials of weakly convex functions using a class of quadratic functions, we first obtain some sufficient conditions for global optimization problems with weakly convex objective functions and weakly convex inequality and equality constraints. Some sufficient optimality conditions for problems with additional box constraints and bivalent constraints are then derived.   相似文献   

7.
Convex composite multi-objective nonsmooth programming   总被引:4,自引:0,他引:4  
This paper examines nonsmooth constrained multi-objective optimization problems where the objective function and the constraints are compositions of convex functions, and locally Lipschitz and Gâteaux differentiable functions. Lagrangian necessary conditions, and new sufficient optimality conditions for efficient and properly efficient solutions are presented. Multi-objective duality results are given for convex composite problems which are not necessarily convex programming problems. Applications of the results to new and some special classes of nonlinear programming problems are discussed. A scalarization result and a characterization of the set of all properly efficient solutions for convex composite problems are also discussed under appropriate conditions.This research was partially supported by the Australian Research Council grant A68930162.This author wishes to acknowledge the financial support of the Australian Research Council.  相似文献   

8.
Subgradient mappings associated with various convex and nonconvex functions are a vehicle for stating optimality conditions, and their proto-differentiability plays a role therefore in the sensitivity analysis of solutions to problems of optimization. Examples of special interest are the subgradients of the max of finitely manyC 2 functions, and the subgradients of the indicator of a set defined by finitely manyC 2 constraints satisfying a basic constraint qualification. In both cases the function has a property called full amenability, so the general theory of existence and calculus of proto-derivatives of subgradient mappings associated with fully amenable functions is applicable. This paper works out the details for such examples. A formula of Auslender and Cominetti in the case of a max function is improved in particular.This work was supported in part by the Natural Sciences and Engineering Research Council of Canada under grant OGP41983 for the first author and by the National Science Foundation under grant DMS-9200303 for the second author.  相似文献   

9.
In a recent paper, Gowda and Ravindran (Algebraic univalence theorems for nonsmooth functions, Research Report, Department of Mathematics and Statistics, University of Maryland, Baltimore, MD 21250, March 15, 1998) introduced the concepts of H-differentiability and H-differential for a function f : R n R n and showed that the Fréchet derivative of a Fréchet differentiable function, the Clarke generalized Jacobian of a locally Lipschitzian function, the Bouligand subdifferential of a semismooth function, and the C-differential of a C-differentiable function are particular instances of H-differentials.In this paper, we consider two applications of H-differentiability. In the first application, we derive a necessary optimality condition for a local minimum of an H-differentiable function. In the second application, we consider a nonlinear complementarity problem corresponding to an H-differentiable function f and show how, under appropriate conditions on an H-differential of f, minimizing a merit function corresponding to f leads to a solution of the nonlinear complementarity problem. These two applications were motivated by numerous studies carried out for C 1, convex, locally Lipschitzian, and semismooth function by various researchers.  相似文献   

10.
The U-Lagrangian is an object recently defined for a second-order study of convex functions. We show its use within the framework of stability theory, where it is of some help in studying the growth of a convex function near a minimum point. The paper concludes with some reflexions for future developments concerning the U-Lagrangian.  相似文献   

11.
Characterizations of global optimality are given for general difference convex (DC) optimization problems involving convex inequality constraints. These results are obtained in terms of -subdifferentials of the objective and constraint functions and do not require any regularity condition. An extension of Farkas' lemma is obtained for inequality systems involving convex functions and is used to establish necessary and sufficient optimality conditions. As applications, optimality conditions are also given for weakly convex programming problems, convex maximization problems and for fractional programming problems.This paper was presented at the Optimization Miniconference held at the University of Ballarat, Victoria, Australia, on July 14, 1994.  相似文献   

12.
The purpose of this paper is to consider a class of nondifferentiable multiobjective fractional programming problems in which every component of the objective function contains a term involving the support function of a compact convex set. Based on the (C,α,ρ,d)-convexity, sufficient optimality conditions and duality results for weakly efficient solutions of the nondifferentiable multiobjective fractional programming problem are established. The results extend and improve the corresponding results in the literature.  相似文献   

13.
Summary This paper is concerned with the development of an integration theory with respect to operator-valued measures which is required in the study of certain convex optimization problems. These convex optimization problems in their turn are rigorous formulations of detection theory in a quantum communication context, which generalise classical (Bayesian) detection theory. The integration theory which is developed in this paper is used in conjunction with convex analysis in Banach spaces to give necessary and sufficient conditions of optimality for this class of convex optimization problems.This research has been supported by the Air Force Office of Scientific Research under Grants AFOSR 77-3281D and AFOSR 82-0135 and the National Science Foundation under Grant NSF ENG 76-02860. A portion of this research was done while the first author was a CNR Visiting Professor at Istituto Matematico U. Dini, Università di Firenze, Italy.  相似文献   

14.
The DC programming and its DC algorithm (DCA) address the problem of minimizing a function f=gh (with g,h being lower semicontinuous proper convex functions on R n ) on the whole space. Based on local optimality conditions and DC duality, DCA was successfully applied to a lot of different and various nondifferentiable nonconvex optimization problems to which it quite often gave global solutions and proved to be more robust and more efficient than related standard methods, especially in the large scale setting. The computational efficiency of DCA suggests to us a deeper and more complete study on DC programming, using the special class of DC programs (when either g or h is polyhedral convex) called polyhedral DC programs. The DC duality is investigated in an easier way, which is more convenient to the study of optimality conditions. New practical results on local optimality are presented. We emphasize regularization techniques in DC programming in order to construct suitable equivalent DC programs to nondifferentiable nonconvex optimization problems and new significant questions which have to be answered. A deeper insight into DCA is introduced which really sheds new light on DCA and could partly explain its efficiency. Finally DC models of real world nonconvex optimization are reported.  相似文献   

15.
Multiobjective optimization is a useful mathematical model in order to investigate real-world problems with conflicting objectives, arising from economics, engineering, and human decision making. In this paper, a convex composite multiobjective optimization problem, subject to a closed convex constraint set, is studied. New first-order optimality conditions for a weakly efficient solution of the convex composite multiobjective optimization problem are established via scalarization. These conditions are then extended to derive second-order optimality conditions.  相似文献   

16.
Several types of finite-dimensional nonlinear programming models are considered in this article. Second-order optimality conditions are derived for these models, under the assumption that the functions involved are piecewiseC 2. In rough terms, a real-valued function defined on an open subsetW orR n is said to be piecewiseC k onW if it is continuous onW and if it can be constructed by piecing together onW a finite number of functions of classC k .  相似文献   

17.
E-Convex Sets, E-Convex Functions, and E-Convex Programming   总被引:34,自引:0,他引:34  
A class of sets and a class of functions called E-convex sets and E-convex functions are introduced by relaxing the definitions of convex sets and convex functions. This kind of generalized convexity is based on the effect of an operator E on the sets and domain of definition of the functions. The optimality results for E-convex programming problems are established.  相似文献   

18.
We present several equivalent conditions for the Karush–Kuhn–Tucker conditions for weak? compact convex sets. Using them, we extend several existing theorems of the alternative in terms of weak? compact convex sets. Such extensions allow us to express the KKT conditions and hence necessary optimality conditions for more general nonsmooth optimization problems with inequality and equality constraints. Furthermore, several new equivalent optimality conditions for optimization problems with inequality constraints are obtained.  相似文献   

19.
Optimality conditions for families of nonlinear programming problems inR n are studied from a generic point of view. The objective function and some of the constraints are assumed to depend on a parameter, while others are held fixed. Techniques of differential topology are used to show that under suitable conditions, certain strong second-order conditions are necessary for optimality except possibly for parameter values lying in a negligible set.Research sponsored, in part, by the Air Force Office of Scientific Research, under grants number 77-3204 and 79-0120.  相似文献   

20.
In this article we prove that some of the sufficient and necessary optimality conditions obtained by Ginchev, Guerraggio, Luc [Appl. Math., 51, 5-36 (2006)] generalize (strictly) those presented by Guerraggio, Luc [J. Optim. Theory Appl., 109, 615-629 (2001)]. While the former paper shows examples for which the conditions given there are effective but the ones from the latter paper fail, it does not prove that generally the conditions it proposes are stronger. In the present note we complete this comparison with the lacking proof.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号