首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The rotational effects in the energy transfer between Kr atoms and highly vibrationally excited naphthalene in the triplet state were investigated using crossed-beam/time-sliced velocity map ion imaging at various translational collision energies. As the initial rotational temperature changes from less than 10 to approximately 350 K, the ratio of vibrational to translational (V-->T) energy transfer cross section to translational to vibrational/rotational (T-->VR) energy transfer cross section increases, but the probability of forming a complex during the collisions decreases. Significant increases in the large V-->T energy transfer probabilities, termed supercollisions, at high initial rotational temperature were observed.  相似文献   

2.
We present ab initio molecular dynamics simulations of head-on collisions between ethyl nitrate molecules at collisional energies from 200 to 1200 kJ/mol. Above a threshold energy, an increasing fraction of the collisions led to rapid dissociation on impact--"shattering." The probability of the shattering dissociation was derived from the quasiclassical trajectories sampling the initial vibrational motion at T(vib) = 300 K. Even for the zero impact parameter and a fixed orientation considered, the observed dissociation probability exhibited a wide spread (much larger than kT(vib)) as a function of the collision energy. This is attributed to variations in the initial vibrational phase. We propose a closed-form expression for the energy-dependent dissociation probability that captures the dependence on the phase and use it to analyze the probability of the shattering dissociation of a larger nitrate ester, pentaerythritol tetranitrate.  相似文献   

3.
An apparatus for detailed study of quantum state-resolved inelastic energy transfer dynamics at the gas-liquid interface is described. The approach relies on supersonic jet-cooled molecular beams impinging on a continuously renewable liquid surface in a vacuum and exploits sub-Doppler high-resolution laser absorption methods to probe rotational, vibrational, and translational distributions in the scattered flux. First results are presented for skimmed beams of jet-cooled CO(2) (T(beam) approximately 15 K) colliding at normal incidence with a liquid perfluoropolyether (PFPE) surface at E(inc) = 10.6(8) kcal/mol. The experiment uses a tunable Pb-salt diode laser for direct absorption on the CO(2) nu(3) asymmetric stretch. Measured rotational distributions in both 00(0)0 and 01(1)0 vibrational manifolds indicate CO(2) inelastically scatters from the liquid surface into a clearly non-Boltzmann distribution, revealing nonequilibrium dynamics with average rotational energies in excess of the liquid (T(s) = 300 K). Furthermore, high-resolution analysis of the absorption profiles reveals that Doppler widths correspond to temperatures significantly warmer than T(s) and increase systematically with the J rotational state. These rotational and translational distributions are consistent with two distinct gas-liquid collision pathways: (i) a T approximately 300 K component due to trapping-desorption (TD) and (ii) a much hotter distribution (T approximately 750 K) due to "prompt" impulsive scattering (IS) from the gas-liquid interface. By way of contrast, vibrational populations in the CO(2) bending mode are inefficiently excited by scattering from the liquid, presumably reflecting much slower T-V collisional energy transfer rates.  相似文献   

4.
The infrared spectrum of the Al(+)-H(2) complex is recorded in the H-H stretch region (4075-4110 cm(-1)) by monitoring Al(+) photofragments. The H-H stretch band is centered at 4095.2 cm(-1), a shift of -66.0 cm(-1) from the Q(1)(0) transition of the free H(2) molecule. Altogether, 47 rovibrational transitions belonging to the parallel K(a)=0-0 and 1-1 subbands were identified and fitted using a Watson A-reduced Hamiltonian, yielding effective spectroscopic constants. The results suggest that Al(+)-H(2) has a T-shaped equilibrium configuration with the Al(+) ion attached to a slightly perturbed H(2) molecule, but that large-amplitude intermolecular vibrational motions significantly influence the rotational constants derived from an asymmetric rotor analysis. The vibrationally averaged intermolecular separation in the ground vibrational state is estimated as 3.03 A, decreasing by 0.03 A when the H(2) subunit is vibrationally excited. A three-dimensional potential energy surface for Al(+)-H(2) is calculated ab initio using the coupled cluster CCSD(T) method and employed for variational calculations of the rovibrational energy levels and wave functions. Effective dissociation energies for Al(+)-H(2)(para) and Al(+)-H(2)(ortho) are predicted, respectively, to be 469.4 and 506.4 cm(-1), in good agreement with previous measurements. The calculations reproduce the experimental H-H stretch frequency to within 3.75 cm(-1), and the calculated B and C rotational constants to within approximately 2%. Agreement between experiment and theory supports both the accuracy of the ab initio potential energy surface and the interpretation of the measured spectrum.  相似文献   

5.
We use our rigid rotor He-LiH potential energy surface [B. K. Taylor and R. J. Hinde, J. Phys. Chem. 111, 973 (1999)] as a starting point to develop a three-dimensional potential surface that describes the interaction between He and a rotating and vibrating LiH molecule. We use a fully quantum treatment of the collision dynamics on the current potential surface to compute rovibrational state-to-state cross sections. We compute excitation and relaxation vibrational rate constants as a function of temperature by integrating these cross sections over a Maxwell-Boltzmann translational energy distribution and summing over Boltzmann-weighted initial rotational levels. The rate constants for vibrational excitation of LiH are very small for temperatures below 300 K. Rate constants for vibrational relaxation of excited LiH molecules, however, are several orders of magnitude larger and show very little temperature dependence, suggesting that the collisions that result in vibrational relaxation are governed by long-range attractive interactions.  相似文献   

6.
Exothermic reactive scattering of F atoms at the gas-liquid interface of a liquid hydrocarbon (squalane) surface has been studied under single collision conditions by shot noise limited high-resolution infrared absorption on the nascent HF(v,J) product. The nascent HF(v,J) vibrational distributions are inverted, indicating insufficient time for complete vibrational energy transfer into the surface liquid. The HF(v=2,J) rotational distributions are well fit with a two temperature Boltzmann analysis, with a near room temperature component (T(TD) approximately equal to 290 K) and a second much hotter scattering component (T(HDS) approximately equal to 1040 K). These data provide quantum state level support for microscopic branching in the atom abstraction dynamics corresponding to escape of nascent HF from the liquid surface on time scales both slow and fast with respect to rotational relaxation.  相似文献   

7.
Broadband ultraviolet absorption spectroscopy has been used to determine CF(2) densities in a plasma etch reactor used for industrial wafer processing, using the CF(2) A (1)B(1)<--X (1)A(1) absorption spectrum. Attempts to fit the experimental spectra using previously published Franck-Condon factors gave poor results, and values for the higher vibrational levels of the A state [(0,v(2),0), with v(2) (')>6] from the ground state were missing; hence new values were calculated. These were computed for transitions between low-lying vibrational levels of CF(2) X (1)A(1) to vibrational levels of CF(2) A (1)B(1) (v(1) ('),v(2) ('),0) up to high values of the vibrational quantum numbers using high level ab initio calculations combined with an anharmonic Franck Condon factor method. The Franck Condon factors were used to determine the absorption cross sections of CF(2) at selected wavelengths, which in turn were used to calculate number densities from the experimental spectra. Number densities of CF(2) have been determined in different regions of the plasma, including the center of the plasma and outside the plasma volume, and CF(2) rotational temperatures and vibrational energy distributions were estimated. For absorption spectra obtained outside the confined plasma volume, the CF(2) density was determined as (0.39+/-0.08)x10(13) molecule cm(-3) and the vibrational and rotational temperatures were determined as 303 and 350 K, respectively. In the center of the plasma reactor, the CF(2) density is estimated as (3.0+/-0.6)x10(13) molecules cm(-3) with T(rot) approximately 500 K. The fitted vibrational distribution in the CF(2) ground state corresponds to two Boltzmann distributions with T(vib) approximately 300 and T(vib) approximately 1000 K, indicating that CF(2) molecules are initially produced highly vibrationally excited, but are partially relaxed in the plasma by collision.  相似文献   

8.
9.
A quantum mechanical investigation of the vibrational and rotational deactivation of NO(+) in collisions with He atoms in the cold and ultracold regime is presented. Ab initio potential energy calculations are carried out at BCCD(T) level and a new global 3D potential energy surface (PES) is obtained by fitting ab initio points within the reproducing kernel Hilbert space method. As a first test of this PES the bound state energies of the (3)He-NO(+) and (4)He-NO(+) complexes are calculated and compared to previous rigid rotor calculations. The efficiency of the vibrational and the rotational cooling of this molecular ion using a buffer gas of helium is then investigated by performing close coupling scattering calculations for collision energy ranging from 10(-6) to 2000 cm(-1). The calculations are performed for the two isotopes (3)He and (4)He and the results are compared to the available experimental data.  相似文献   

10.
A series of time-resolved IR-IR double-resonance experiments have been conducted where methane molecules are excited into a selected rovibrational level of the 2nu3(F2) vibrational substate of the tetradecad and where the time evolution of the population of the various energy levels is probed by a tunable continuous wave laser. The rotational relaxation and vibrational energy transfer processes occurring in methane upon inelastic CH4-H2 and CH4-He collisions have been investigated by this technique at room temperature and at 193 K. By probing transitions in which either the lower or the upper level is the laser-excited level, rotational depopulation rates in the 2nu3(F2) substate were measured. The rate constants for CH4-H2 collisions were found to be 17.7 +/- 2.0 and 18.9 +/- 2.0 micros(-1) Torr(-1) at 296 and 193 K, respectively, and for CH(4)-He collisions they are 12.1 +/- 1.5 and 16.0 +/- 2.0 micros(-1) Torr(-1) at the same temperatures. The vibrational relaxation was investigated by probing other stretching transitions such as 2nu3(F2) - nu3, nu3 + 2nu4 - 2nu4, and nu3 + nu4 - nu4. A kinetic model, taking into account the main collisional processes connecting energy levels up to 6000 cm(-1), that has been developed to describe the various relaxation pathways allowed us to calculate the temporal evolution of populations in these levels and to simulate double-resonance signals. The different rate coefficients of the vibrational relaxation processes involved in these mixtures were determined by fitting simulated signals to the observed signals corresponding to assigned transitions. For vibration to translation energy transfer processes, hydrogen is a much more efficient collision partner than helium, nitrogen, or methane itself at 193 K as well as at room temperature.  相似文献   

11.
Calculations of the nonequilibrium rate constant for the model system H2O2 + M → 2 OH + M over the temperature range of 300–1900°K, assuming that only vibrational, or that both vibrational and rotational, energy is transferred in a collision, show that (1) inefficient energy transfer leads to a distinctly non-Arrhenius temperature dependence, the nonlinearity being in principle different for different M, and (2) despite different activation energies for different M, the order of M efficiencies is preserved throughout the temperature range. A reversal of M efficiencies can occur only if there is a change of mechanism of the reaction over the temperature range investigated.  相似文献   

12.
Time-dependent, quantum reaction dynamics wavepacket approach is employed to investigate the impacts of the translational, vibrational, and rotational motion on the HD+H(3)(+) → H(2)D(+) + H(2) reaction using the Xie-Braams-Bowman potential energy surface [Z. Xie, B. J. Braams, and J. M. Bowman, J. Chem. Phys. 122, 224307 (2005)]. We treat this five atom reaction with a seven-degree-of-freedom model by fixing one Jacobi and one torsion angle related to H(3) (+) at the lowest saddle point geometry of the potential energy surface. The initial state selected reaction probabilities show that the rotational excitations of H(+)-H(2) greatly enhance the reactivity with the reaction probabilities increased double at high rotational states compared to the ground state. However, the vibrational excitations of H(3) (+) hinder the reactivity. The ground state reaction probability shows no reaction threshold for this exoergic reaction, and as the translational energy increases, the reaction probability decreases. Furthermore, reactive resonances and zero point energy play very important roles on the reaction dynamics. The obtained integral cross section has the character of an exoergic reaction without a threshold: it decreases with the translational energy increasing. The calculated thermal rate constants using this seven-degree-of-freedom model are in agreement with a later experiment measurement.  相似文献   

13.
Classical trajectory simulations are performed to study energy transfer in collisions of protonated triglycine (Gly)(3) and pentaglycine (Gly)(5) ions with n-hexyl thiolate self-assembled monolayer (SAM) and diamond [111] surfaces, for a collision energy E(i) in the range of 10-110 eV and a collision angle of 45 degrees. Energy transfer to the peptide ions' internal degrees of freedom is more efficient for collision with the diamond surface; i.e., 20% transfer to peptide vibration/rotation at E(i) = 30 eV. For collision with diamond, the majority of E(i) remains in peptide translation, while the majority of the energy transfer is to surface vibrations for collision with the softer SAM surface. The energy-transfer efficiencies are very similar for (Gly)(3) and (Gly)(5). Constraining various modes of (Gly)(3) shows that the peptide torsional modes absorb approximately 80% of the energy transfer to the peptide's internal modes. The energy-transfer efficiencies depend on E(i). These simulations are compared with recent experiments of peptide SID and simulations of energy transfer in Cr(CO)(6)(+) collisions with the SAM and diamond surfaces.  相似文献   

14.
This article describes a (39)K nuclear magnetic resonance (NMR) spectroscopic study of K (+) displacement at the muscovite/water interface as a function of aqueous phase pH. (39)K NMR spectra and T 2 relaxation data for nanocrystalline muscovite wet with a solid/solution weight ratio of 1 at pH 1, 3, and 5.5 show substantial liquid-like K (+) only at pH 1. At pH 3 and 5.5, all K (+) appears to be associated with muscovite as inner- or outer-sphere complexes, indicating that H 3O (+) does not displace basal surface K (+) beyond the (39)K detection limit under these conditions. In our pH 1 mixture, only approximately 1/3 of the initial basal surface K (+) population is located more than 3-4 A from the surface. (29)Si and (27)Al MAS NMR spectra and SEM images show no evidence of dissolution during the (39)K experiments, consistent with the liquid-like (39)K fraction originating from displaced basal surface K (+). Assuming no muscovite dissolution or interlayer exchange, the K (+)/H 3O (+) ratio relevant to the solution/surface exchange equilibrium is controlled by the total amount of K (+) on the surface and H 3O (+) in solution (K (+) surf/H 3O (+) aq). These parameters, in turn, depend on the basal surface area, solution pH, and the solid/solution ratio. The results here are consistent with significant displacement of surface K (+) only under conditions where the initial K (+) surf/H 3O (+) aq ratio is less than approximately 1. Computational molecular models of the muscovite/water interface should account for both K (+) and H 3O (+) in the near-surface region.  相似文献   

15.
A three-dimensional potential energy surface is developed to describe the structure and dynamical behavior of the Mg(+)-H(2) and Mg(+)-D(2) complexes. Ab initio points calculated using the RCCSD(T) method and aug-cc-pVQZ basis set (augmented by bond functions) are fitted using a reproducing kernel Hilbert space method [Ho and Rabitz, J. Chem. Phys. 104, 2584 (1996)] to generate an analytical representation of the potential energy surface. The calculations confirm that Mg(+)-H(2) and Mg(+)-D(2) essentially consist of a Mg(+) atomic cation attached, respectively, to a moderately perturbed H(2) or D(2) molecule in a T-shaped configuration with an intermolecular separation of 2.62 A? and a well depth of D(e) = 842 cm(-1). The barrier for internal rotation through the linear configuration is 689 cm(-1). Interaction with the Mg(+) ion is predicted to increase the H(2) molecule's bond-length by 0.008 A?. Variational rovibrational energy level calculations using the new potential energy surface predict a dissociation energy of 614 cm(-1) for Mg(+)-H(2) and 716 cm(-1) for Mg(+)-D(2). The H-H and D-D stretch band centers are predicted to occur at 4059.4 and 2929.2 cm(-1), respectively, overestimating measured values by 3.9 and 2.6 cm(-1). For Mg(+)-H(2) and Mg(+)-D(2), the experimental B and C rotational constants exceed the calculated values by ~1.3%, suggesting that the calculated potential energy surface slightly overestimates the intermolecular separation. An ab initio dipole moment function is used to simulate the infrared spectra of both complexes.  相似文献   

16.
The theory for collision of an atom with a non-linear triatomic molecule is presented and the He + H2O system considered as an example. It is shown that both anharmonic and Coriolis coupling are important for the energy transfer. Seventeen rate constants for vibrational transitions in H2O are calculated in the temperature range 300–2000 K.  相似文献   

17.
The reactivity of CH(4) impinging on a Pt(111) surface was examined using a precursor-mediated microcanonical trapping model of dissociative chemisorption wherein the effects of rotational and vibrational energy could be explored. Dissociative sticking coefficients for a diverse range of non-equilibrium effusive beam, supersonic beam, and eigenstate-resolved experiments were simulated and an average relative discrepancy between theory and experiment of better than 50% was achieved by treating molecular rotations and translation parallel to the surface as spectator degrees of freedom, and introducing a dynamically-biased vibrational efficacy. The model parameters are {E(0) = 57.9 kJ mol(-1), s = 2, η(v) = 0.40} where E(0) is the apparent threshold energy for reaction, s is the number of surface oscillators participating in energy exchange within each gas-surface collision complex formed, and η(v) is the mean vibrational efficacy for reaction relative to normal translational energy which figures in the assembly of the active exchangeable energy which is available to surmount the activation barrier to dissociative chemisorption. GGA-DFT electronic structure calculations provided vibrational frequencies for the transition state for dissociative chemisorption. The asymmetry of the rotational state populations in supersonic and effusive molecular beam experiments allowed kinetic analysis to establish that taking rotation as a spectator degree of freedom is a good approximation. Surface phonons, rather than the incident molecules, are calculated to play the dominant role in supplying the energy required to overcome the activation barrier for dissociative chemisorption under the thermal equilibrium conditions relevant to high pressure catalysis. Over the temperature range 300 K ≤T≤ 1000 K, the thermal dissociative sticking coefficient is predicted to be well described by S(T) = S(0) exp(-E(a)/RT) where S(0) = 0.62 and E(a) = 62.6 kJ mol(-1).  相似文献   

18.
Rate constants have been measured from 300 to 1400 K in a selected ion flow tube (SIFT) and a high temperature flowing afterglow for the reactions of N+, N2+ and N3+ with NO. In all of the systems, the rate constants are substantially less than the collision rate constant. Comparing the high temperature results to kinetics studies as a function of translational energy show that all types of energy (translational, rotational, and vibrational) affect the reactivity approximately equally for all three ions. Branching ratios have also been measured at 300 and 500 K in a SIFT for the N+ and N3+ reactions. An increase in the N2+ product at the expense of NO+ nondissociative charge transfer product occurs at 500 K with N+. The branching ratios for the reaction of N3+ with NO have also been measured in the SIFT, showing that only nondissociative charge transfer giving NO+ occurs up to 500 K. The current results are discussed in the context of the many previous studies of these ions in the literature.  相似文献   

19.
The evolution of the rotational and vibrational distributions of molecular hydrogen in a hydrogen plasma expansion is measured using laser induced fluorescence in the vacuum-UV range. The evolution of the distributions along the expansion axis shows the relaxation of the molecular hydrogen from the high temperature in the upstream region to the low ambient temperature in the downstream region. During the relaxation, the vibrational distribution, which has been recorded up to v = 6, is almost frozen in the expansion and resembles a Boltzmann distribution at T approximately 2200 K. However, the rotational distributions, which have been recorded up to J = 17 in v = 2 and up to J = 11 in v = 3, cannot be described with a single Boltzmann distribution. In the course of the expansion, the lower rotational levels (J < 5) adapt quickly to the ambient temperature ( approximately 500 K), while the distribution of the higher rotational levels (J > 7) is measured to be frozen in the expansion at a temperature between 2000 and 2500 K. A model based on rotation-translation energy transfer is used to describe the evolution of the rotational distribution of vibrational level v = 2 in the plasma expansion. The behavior of the low rotational levels (J < 5) is described satisfactory. However, the densities of the higher rotational levels decay faster than predicted.  相似文献   

20.
The energy transfer between argon atoms and ozone complexes O3*, excited in the region of the dissociation threshold, is calculated for fixed temperatures (100 K< or =T < or =2500 K) using classical trajectories. The internal energy of ozone is resolved in terms of vibrational and rotational energies. For all temperatures, energy flows from O3* to Ar. The vibrational energy transfer, relative to k(B)T, is very small below 500 K, but gradually increases towards high temperatures. The relative rotational energy transfer, on the other hand, monotonously decreases with T; around 1100 K it falls below the relative vibrational energy transfer. Thermally averaged cross sections for vibrational and rotational energy transfers are also calculated. The implications for the stabilization of ozone complexes in the energy transfer model are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号