首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A chain-like zincophosphate [Zn8(HPO4)8(H2PO4)8]•[(C2H8N)8]•4H2O was obtained at room temperature from a ZnO/P2O5/dimethylamine/H2O mixture. The crystal structure was determined by single crystal X-ray diffraction. The symmetry is monoclinic a=1.26450(7)nm, b=1.08477(5)nm, c=1.46311(4)nm, β=98.793(5)°, space group Cc. The structure consists of chains of zinc-corner-sharing Zn2P2O4 four rings. The negative charge of the chains is compensated by the protonated dimethylamine. The characterization by 31P solid state nmr spectroscopy is also reported.  相似文献   

2.
(MeOCH2CH2C5H4)3Ln (Ln  La, Pr) complexes have been synthesized by reaction of LnCl3 with MeOCH2CH2C5H4Na in THF at room temperature. A single-crystal X-ray diffraction study shows that the complex (MeOCH2CH2C5H4)3Pr is monomeric in structure, and that the coordination number of the central Pr atom is 11. This is the first example of unsolvated monomeric La and Pr metallocene complexes with the largest possible coordination number of the metal.  相似文献   

3.
The heterobimetallic bis(indenyl) chloride complexes of ytterbium and lutetium (C9H7)2Ln(μ-Cl)2Li(Et2O)2 (Ln = Yb or Lu) were synthesized by the metathesis reaction of LnCl3 with two equivalents of indenyllithium in diethyl ether. In the case of ytterbium, the analogous reaction in 1,2-dimethoxyethane afforded the ionic complex [(C9H7)2YbCl2][Li(DME)3]+. The reaction of YbCl3 with indenylpotassium in a molar ratio of 1: 2 in THF is accompanied by reduction of the metal atom to give the bis(indenyl) derivative of YbII, (C9H7)2Yb(THF)2. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 39–44, January, 2008.  相似文献   

4.
It is found that diffraction patterns of complexes I–V of the composition [Ln(Phen)(C4H8NCS2)3] (Ln = Sm, Eu, Tb, Dy, and Tm respectively) are similar. Single crystals of [Dy(Phen)(C4H8NCS2)3]·3CH2Cl2 (VI) obtained are. According to the X-ray crystallographic data, in the structure of VI the unit cell contains two crystallographically independent molecules of the [Dy(Phen)(C4H8NCS2)3] complex and six CH2Cl2 molecules. The N2S6 coordination polyhedron of the Dy atom is a distorted square antiprism. In the range of 2–300 K the magnetic properties of complexes I–V are studied. It is found that complex III passes to the magnetically ordered state; the spontaneous magnetization at 2 K is 24 600 G·cm3/mol. At 300 K compounds I–IV exhibit photoluminescence in the visible spectral range. It is found that the photoluminescence intensity of complex I is several times higher than the photoluminescence intensity of complexes II–IV.  相似文献   

5.
《Fluid Phase Equilibria》1999,165(2):157-168
A simple method is developed to estimate mixture critical temperatures (Tc), pressures (Pc), and densities (ρc) as a function of overall composition (X) from near critical region experimental coexistence data. This three-step method is applied to four mixtures, CO2–C3H8, CO2nC4H10, C2H6–C3H8, and C3H8nC4H10. Isothermal liquid–vapor coexistence data, which includes temperature, vapor pressure, coexisting densities (ρ and ρv), and coexisting compositions for the more volatile component (x1v and x1) are used. In the first step, the difference of the saturated liquid and vapor densities (ρρv) is fitted to an empirical function in ((PcP)/Pc) to obtain Pc. Then P/Pc and ((ρ+ρv)/2ρc) are simultaneously fitted to functions of a polynomial in (X1−(x1v+x1)/2) yielding estimates of ρc and X1. Finally, the discrete estimated critical data points are fitted with an equation to provide a continuous representation of the critical lines. The method is successfully tested for the mixtures, CO2–C3H8 and CO2nC4H10, for which there is a reasonable amount of isothermal data. The procedure is then applied to the mixtures, C2H6–C3H8 and C3H8nC4H10, for which there are sparse data. For all four mixtures, the critical temperature line, Tc vs. X1, matches literature values within ±0.5%. The critical pressure line, Pc vs. X1, and critical density line, ρc vs. X1, match literature values, in general, within ±2%.  相似文献   

6.
《Solid State Sciences》2001,3(3):309-319
Single crystals of two lanthanide complexes, presenting similar formula Ln(H2O)x(C2O4)2 · NH4 with Ln=La, x=0 and Ln=Gd, x=1, have been prepared, in closed system at 200 °C. The gadolinium complex is bi-dimensional. A layer is built by the packing of the basic unit, [Gd(C2O4)]4. The gadolinium atoms are related only by bischelating oxalate ligands, the ammonium ion and the water molecule (bound to the gadolinium atom) are localized into the interlayer space. The lanthanum complex is tri-dimensional. The basic building unit remains approximately the same and the packing of these units form a layer. However, within these units, the lanthanum atoms are related by either an oxalate ligand or an edge. Moreover, an oxalate ligand assumes the connection between the layers. The ammonium ion is localized into two sets of intersecting channels. Pure phase of the gadolinium complex has been prepared at 100 °C and extended to some lanthanide elements, Eu…Yb. As the size of the lanthanide ionic radius is decreasing, it is noticeable that the a unit–cell constant follows an expansion pattern while the others two follow an usual contraction one. The thermal behavior of this family shows that the anhydrous compounds are obtained and that some water molecule is sorbed during the cooling. Thus, the anhydrous compounds present a relatively open-framework with some small micropores.  相似文献   

7.
Two new benzene clathrates of the form Cd(4,4-bipyridyl)M(CN)4 · 2C6H6, (M=Cd or Hg) have been prepared in powder form. Their spectral data were compared with those of the corresponding host complexes and found to be consistent with the host structure found in Td-type clathrates.  相似文献   

8.
A complex of Lutetium perchloric acid coordinated with l-glutaminic acid (C5H9NO4) and imidazole (C3H4N2), Lu(C5H9NO4)(C3H4N2)6(ClO4)3·5HClO4·10H2O was synthesized and characterized. Thermodynamic properties of the complex were studied with an adiabatic calorimeter (AC) from 80 to 390 K and differential scanning calorimetry (DSC) from 100 to 300 K. Two thermal abnormalities were discovered at 220.34 and 248.47 K, which were deduced to be phase transitions. One was interpreted as a freezing-in phenomenon of the reorientational motion of ClO4 ? ions and the other was attributed to the orientational order/disorder process of ClO4 ? ions. The low-temperature molar heat capacities were measured by AC and the thermodynamic functions [H T  ? H 298.15] and [S T  ? S 298.15] were derived in the temperature range from 80 to 390 K with temperature interval of 5 K. Thermal decomposition behavior of the complex was studied by thermogravimetric analysis and DSC.  相似文献   

9.
The title compound (C4N2H12)2Zr(C2O4)4·H2O 1 was synthesized by the reaction of ZrOCl2·8H2O, H2C2O4·2H2O and piperazinium in aqueous solution. Single-crystal X-ray analysis has revealed that compound 1 (C16H26N4O17Zr, Mr = 637.63) crystallizes in the monoclinic system, space group P21/c with a = 9.0425(3), b = 13.3844(3), c = 19.1191(5)A, β = 98.365(1)o, V = 2289.34(11) A3, Z = 4, Dc = 1.850 g/cm3, F(000) = 1304, μ = 0.577 mm-1, the final R = 0.0240 and wR = 0.0628 for 4386 observed reflections with I > 2σ(I). X-ray crystal-structure analysis suggests that compound 1 consists of [Zr(C2O4)4]4- anion and two protonated piperazinium cations. The anions are linked through hydrogen bonds of piperazinium. FT-IR and Raman spectra clearly show the existence of oxalate groups in the crystal lattice.  相似文献   

10.
The heat capacities of Ln(Me2dtc)3(C12H8N2) (Ln = La, Pr, Nd, Sm, Me2dtc = dimethyldithiocarbamate) have been measured by the adiabatic method within the temperature range 78–404 K. The temperature dependencies of the heat capacities, C p,m [La(Me2dtc)3(C12H8N2)] = 542.097 + 229.576 X ? 27.169 X 2 + 14.596 X 3 ? 7.135 X 4 (J K?1 mol?1), C p,m [Pr(Me2dtc)3(C12H8N2)] = 500.252 + 314.114 X ? 17.596 X 2 ? 0.131 X 3 + 16.627 X 4 (J K?1 mol?1), C p,m [Nd(Me2dtc)3(C12H8N2)] = 543.586 + 213.876 X ? 68.040 X 2 + 1.173 X 3 + 2.563 X 4 (J K?1 mol?1) and C p,m [Sm(Me2dtc)3(C12H8N2)] = 528.650 + 216.408 X ? 16.492 X 2 + 12.076 X 3 + 4.912 X 4 (J K?1 mol?1), were derived by the least-squares method from the experimental data. The heat capacities of Ce(Me2dtc)3(C12H8N2) and Pm(Me2dtc)3(C12H8N2) at 298.15 K were evaluated to be 617.99 and 610.09 J K?1 mol?1, respectively. Furthermore, the thermodynamic functions (entropy, enthalpy and Gibbs free energy) have been calculated using the obtained experimental heat capacity data.  相似文献   

11.
The thermal decomposition of Ho(III), Er(III), Tm(III) and Yb(III) propionate monohydrates in argon was studied by means of thermogravimetry (TG), differential thermal analysis (DTA), IR-spectroscopy and X-ray diffraction (XRD). Dehydration takes place around 90?°C. It is followed by the decomposition of the anhydrous propionates to Ln2O2CO3 (Ln?=?Ho, Er, Tm or Yb) with the evolution of CO2 and 3-pentanone (C2H5COC2H5) between 300 and 400?°C. The further decomposition of Ln2O2CO3 to the respective sesquioxides Ln2O3 is characterized by an intermediate plateau extending from approximately 500?C700?°C in the TG traces. This stage corresponds to an overall composition of Ln2O2.5(CO3)0.5 but is more probably a mixture of Ln2O2CO3 and Ln2O3. The stability of this intermediate state decreases for the lighter rare-earth (RE) compounds studied. Full conversion to Ln2O3 is achieved at about 1,100?°C. The overall thermal decomposition behaviour of the title compounds is similar to that previously reported for Lu(C2H5CO2)3·H2O.  相似文献   

12.
Yan  Bing  Chen  Zhi-da  Wang  Shi-Xi 《Transition Metal Chemistry》2001,26(3):287-289
Using K3Mn(CN)6, DMF and Ln(NO3)3 · 6H2O (Ln = Tb, Dy or Er), novel cyano-bridged complexes Ln(DMF)4(H2O)2Mn(CN)6 · H2O (TbMn, DyMn and ErMn, respectively) were prepared and their magnetochemical properties were studied in detail. A weak antiferromagnetic interaction was found to exist between the rare earth ions and the manganese ion. Er(DMF)4(H2O)2Mn(CN)6 · H2O, in particular, exhibits long-range magnetic ordering, a higher critical temperature (T c = 17.5 K) and a stronger coercive force (H c = 980 Oe).  相似文献   

13.
《Solid State Sciences》2001,3(5):623-632
Zr(PO4)2·N2C2H10 or MIL-43 and Ti2(PO4)2(HPO4)2·N2C2H10 or MIL-44 were prepared hydrothermally (20 or 4 days, 473 or 453 K, respectively, autogenous pressure) in the presence of ethylenediamine. Their structures have been determined by single-crystal X-ray diffraction. MIL-43 crystallises in the monoclinic space group P21 (No. 4) with a=11.0722(1), b=10.6631(1), c=16.4642(2) Å, β=95.991(1)° and V=1933.21(3) Å3 (final agreement factors R1(F)=0.0466, wR2(F2)=0.1096). Due to the very poor quality of the crystal, only an approached structure of MIL-44 is given; it crystallises in the triclinic space group P1 (No. 1) with a=5.0845(4), b=6.3097(5), c=12.6111(9) Å, α=77.454(1), β=78.926(2), γ=89.986(1)° and V=387.21(5) Å3. Both solids are two-dimensional and are the ion-exchanged equivalents of the layered solids αZrP and γTiP. Inorganic sheets of MIL-43 are built up from pseudo-hexagonal arrays of ZrO6 octahedra surrounded by PO4 tetrahedra pointing their terminal oxygen alternatively up and down at the interlayer space. Layers of MIL-44 are made of double (TiOP) chains built from TiO6 octahedra and PO4 tetrahedra on which HPO4 groups are grafted pointing towards the interlayer space. In both cases, diprotonated organic templates, located between the layers, interact with terminal phosphate groups and ensure via hydrogen bonds the stability of the structures.  相似文献   

14.
以哌嗪为模板剂,在水-乙醇混合溶剂体系中溶剂热合成了两个具有三维开放骨架结构的稀土硫酸盐[Ln4(H2O)4(SO4)10](C4N2H12)4(H2O)4(Ln = Gd,化合物1和Eu,化合物2),并对其进行了结构表征、热重以及荧光光谱分析. 单晶结构解析表明,化合物1和2属于同构异质,均结晶于单斜晶系,P21/c空间群,化合物1,a = 19.691(3) ?,b = 19.249(3) ?,c = 13.186(2) ?,β = 92.33(0)o,V = 4993.5(1) ?3, Z =4. 化合物2,a = 19.7233(8) ?,b = 19.2791(8) ?,c = 13.2095(5) ?,β = 92.329(1)o,V = 5018.7(3) ?3, Z =4. 两个化合物在ab平面上由SO4,GdO8和GdO9多面体共边或共角交错连接形成含有八元环和十六元环的二维层状结构,该二维层沿c方向平行排列,相邻层通过SO4四面体相连形成具有孔道的三维开放骨架结构,其孔道之中包含平衡骨架负电荷的质子化哌嗪分子. 化合物2的固体荧光光谱分析显示其在397nm激发波长下,表现出典型的Eu3+发光性质.    相似文献   

15.
The reaction of CuBr2 with 1,10‐phen‐H2O (1,10‐phen = 1,10‐phenanthroline) gave two compounds: CuBr2(C12H8N2) and Cu3Br3(C12H8N2)2. Their structures have been characterized by single‐crystal X‐ray diffraction analysis, elemental analyses, thermogravimetric analyses (TGA) and measurement of variable temperature magnetic susceptibility. Crystal data for CuBr2(C12‐H8N2): monoclinic, space group P21/n, a = 0.9977(3) nm, b = 0.65138(14) nm, c = 1.8207(4) nm, β = 91.624(18)°, V = 1.1828(5) nm3, Z = 2. Crystal data for Cu3Br3(C12H8N2)2: monoclinic, space group C2/c, a = 1.00167(11) nm, b = 1.4523(4) nm, c = 1.6295(3) nm, β = 94.386(14)°, V = 2.3635(8) nm3, Z = 3.  相似文献   

16.
The organoantimony peroxide (Ar2SbO)4(O2)2 (Ar = C6H3OMe-2, Br-5) was synthesized by the oxidation of Ar3Sb with hydrogen peroxide in the presence or acetoxime or acetophenone oxime in dioxane. The product crystallizes with various content of the solvent molecules in the crystal unit cell [1.5 (I) and 6 (II), respectively]. An X-ray diffraction analysis of the solvates was performed. Four antimony atoms in the peroxide are in the octahedral coordination, and are linked through bridging oxygen atoms and two peroxide groups. The distances Sb-C, Sb-Obridge, Sb-Operoxide, O-O and Sb...Sb are 2.117–2.122, 1.960–1.972, 2.193–2.235, 1.461, 1.465 and 3.223–3.237 Å in I, and 2.112, 2.119, 1.957, 1,966, 2.204, 2,246, 1,467, and 3.2439 Å in II.  相似文献   

17.
Reduction of 2,5-di-tert-butylcyclopentadienone with two equivalents of thulium diiodide in tetrahydrofuran afforded the binuclear thulium(iii) complex with the cyclopentadienyl oxide ligand, viz., TmI2(THF)2[5-But 2C5H2O]TmI2(THF)3 (1). Shielding of the carbonyl carbon atom with two tert-butyl substituents prevents pinacolization of the ketyl radical anions that formed upon one-electron reduction of cyclopentadienone. The reaction of thulium diiodide with an excess of pyridine in tetrahydrofuran gave a product of reductive coupling of two pyridine radical anions, viz., [TmI2(C5H5N)4]2(2-N2C10H10) (2). The structures of complexes 1 and 2 were established by single-crystal X-ray diffraction analysis.  相似文献   

18.
Complexes of nickel atoms and small clusters with acetylene molecules are studied within the density functional theory. A trend toward the predominant formation of structures with bridge hydrogen atoms is observed in reactions between Ni n and acetylene with rising n.  相似文献   

19.
The syntheses and crystal structures of the closely related but non-isostructural Cd2(C19H21N3O3F)4(H2O)2?·?4H2O (1) and Pb2(C19H21N3O3F)4?·?4H2O (2) are described, where C19H21N3O3F? is enrofloxacinate (enro). Both compounds contain centrosymmetric, binuclear, neutral complexes incorporating a central diamond-shaped M2O2 (M?=?Cd, Pb) structural unit. The Cd2+ coordination polyhedron in 1 is a CdO6 trigonal prism, including one coordinated water. The Pb2+ coordination polyhedron in 2 can be described as a very distorted square-based PbO5 pyramid, although two additional short Pb?···?O (<3.1?Å) contacts are also present. In the crystal of the cadmium complex, O–H?···?O hydrogen bonds lead to a layered structure. In the lead compound, O–H?···?O and O–H?···?N interactions lead to chains in the crystal. Crystal data: 1: C76H96Cd2F4N12O18, M r?=?1766.45, triclinic, P 1, a?=?12.185(2)?Å, b?=?12.306(3)?Å, c?=?14.826(3)?Å, α?=?68.15(3)°, β?=?70.28(3)°, γ?=?86.11(3)°, V?=?1938.2(7)?Å3, Z?=?1, T?=?298 K, R(F)?=?0.030, wR(F 2)?=?0.079. 2: C76H88F4N12O16Pb2, M r?=?1920.00, triclinic, P 1, a?=?12.0283(4)?Å, b?=?12.7465(4)?Å, c?=?13.0585(4)?Å, α?=?83.751(1)°, β?=?74.635(1)°, γ?=?81.502(1)°, V?=?1904.3(1)?Å3, Z?=?1, T?=?298?K, R(F)?=?0.021, wR(F 2)?=?0.049.  相似文献   

20.
N,N,N??,N??-tetramethylethylenediamine is obtained by the reaction of ethylenediamine with formaldehyde and formic acid (the Eschweiler-Clarke reaction) and then alkylated with allyl chloride (or bromide) in a ratio of 1:1 or 1:2 to obtain N-allyl-N,N,N??,N??-tetramethylethylenediaminium and N,N??-diallyl-N,N,N??,N??-tetramethylethylenediaminium bromide respectively. [{C2H4N2(H+)(CH3)4(C3H5)}Cu4Cl6] (1) and [{C2H4N2(CH3)4(C3H5)2}0.5Cu2Cl1.67Br1.33] (2) ??-complexes are obtained from alcohol solutions containing an ethylenediamine derivative and copper(II) chloride by ac-electrochemical synthesis on copper wire electrodes. An XRD study of the complexes is carried out. The crystals are monoclinic; 1: P21/n space group, a = 9.0081(6) ?, b = 12.5608(7) ?, c = 16.8610(10) ?, ?? = 102.061(3)°, V = 1865.7(2) ?3, Z = 4; 2: C2/c space group, a = 14.462(2) ?, b = 12.519(1) ?, c = 12.762(2) ?, ?? = 107.861(5)°, V = 2199.1(4) ?3, Z = 8. The structure of 1 consists of infinite copper halide networks with four crystallographically independent copper atoms, one of which coordinates the double bond of the allyl group of the ligand. The [C2H4N2(H)(CH3)4(C3H5)]2+ cations are attached above and below the plane of the network. The individual fragments are bonded via an extensive system of (N)H??Cl and (C)H??Cl hydrogen bonds. The structure of 2 contains a three-dimensional copper halide framework whose cavities contain the [C2H4N2(CH3)4(C3H5)2]2+ cations that are ??-coordinated with copper(I) atoms. In both structures, the Cu(I) atom that coordinates the C=C bond has a trigonal-pyramidal coordination environment consisting of the double C=C bond of the corresponding ligand and three halogen atoms. The other Cu(I) atoms have a tetrahedral environment consisting solely of halogen atoms. The Cu-(C=C) distance is 1.958(1) ?, (1) and 1.974(1) ? (2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号